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Basic communication scheme

There are not secure channels. Thereby the need of using
Cryptography (i.e., to encrypt messages).

Bob Alice

Eve

Why should we use elliptic-curve-based cryptography? It allows
small keys compared with other primitives.



2/40

Basic communication scheme
There are not secure channels.

Thereby the need of using
Cryptography (i.e., to encrypt messages).

Bob Alice

Eve

Why should we use elliptic-curve-based cryptography? It allows
small keys compared with other primitives.



2/40

Basic communication scheme
There are not secure channels. Thereby the need of using
Cryptography (i.e., to encrypt messages).

Bob Alice

Eve

Why should we use elliptic-curve-based cryptography? It allows
small keys compared with other primitives.



2/40

Current public-key cryptography
Security based on hard computational problems like Integer
Factorization (IFP) and Discrete Logarithm (DLP)

Bob Alice

Eve

Why should we use elliptic-curve-based cryptography? It allows
small keys compared with other primitives.
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Post-quantum cryptography
The Shor’s quantum algorithm allows to solve the IFP and DLP with
a polynomial running-time complexity [1], and the global giants such
as Intel, Google, IBM, Rigetti, and Microsoft are investing heavily
in the development of quantum computers.

Figure 1: ... middle of the ghetto, bunch of monsters,
this time of night with quantum physics books? ... those
books are WAY too advanced for her. If you ask me, I’d
say she’s up to something... - James Edwards from MIB
film (1997).
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Post-quantum cryptography

There are 26 candidates for being considered by the U.S. govern-
ment’s National Institute of Standards and Technology (NIST) for
inclusion in a forthcoming standard for quantum-safe cryptography.
Those candidates fall in one of the following schemes:

• Code-based,

• Lattice-based ,

• Multivariate-quadratic based,

• Hash-based, and

• Isogeny-based.

Why must we use isogeny-based cryptography? It allows small keys
compared with the another primitives.
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Contributions of this thesis

1) Classical world (ECDH):

Improvements on solving DLP on E/F2n×` : y2+xy = x3+ax2+b

2) Post-quantum world:

2.a) Security analysis of isogeny-based cryptography (SIDH):

E/Fp2 : y2 = x3 + Ax + B

2.b) Efficiently constant-time implementations of isogeny-based
cryptography (CSIDH):

E/Fp : y2 = x3 + Ax2 + x
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ECDH overview

ECDH framework [2, 3]:

• n and ` two positive integers such that gcd(n, `),

• E/F2n×` : y2 + xy = x3 + ax2 + b with
#E(Fp2) = c · r ≈ r ≈ 2n×`, a ∈ F2n and b ∈ F2` , and

• an order-r point P.

General description ECDH:

PA ← [a]

PB ← [b]

P

[ab]P

The shared secret key is [ab]P, and the security is given by the
hardness of computing a (or b) given the data colored in red ink
(DLP problem).
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GHS Weil descent technique

The Guadry-Hess-Smart (GHS) Weil descent technique allows to
map points of an elliptic curve into divisors of the Jacobian of a
higher genus hyperelliptic curve.

bitlength

running-time

sub-exponentional

exponentional

This is interesting, because
there are sub-exponentional
index-calculus based algo-
rithms for solving the DLP
on higher genus hyperelliptic
curves. The two most costly
steps are the smooth divisors
search and computation of the
kernel element.
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Index-calculus based algorithm
Smooth divisor search

Let F be the set of irreducible s-smooth divisors (pair of polynomials
with first entry being an irreducible polynomial of degree at most
s). Let’s write t := #F . The task is to find λ such that D′ = λD.
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Index-calculus based algorithm
Smooth divisor search

Let F be the set of irreducible s-smooth divisors (pair of polynomials
with first entry being an irreducible polynomial of degree at most
s). Let’s write t := #F . The task is to find λ such that D′ = λD.


m1,1 m1,2 · · · m1,t

m2,1 m2,2 · · · m1,t
...

. . .
...

mt,1 mt,2 · · · mt,t




D1

D2
...

Dt

 =


α1

α2
...
αt

D +


β1
β2
...
βt

D′
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Index-calculus based algorithm
Computation of the kernel element

Let F be the set of irreducible s-smooth divisors (pair of polynomials
with first entry being an irreducible polynomial of degree at most
s). Let’s write t := #F . The task is to find λ such that D′ = λD.

[
γ1 γ2 · · · γt

]

m1,1 m1,2 · · · m1,t

m2,1 m2,2 · · · m1,t
...

. . .
...

mt,1 mt,2 · · · mt,t

 =


0
0
...
0
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Index-calculus based algorithm
Computation of the kernel element

Let F be the set of irreducible s-smooth divisors (pair of polynomials
with first entry being an irreducible polynomial of degree at most
s). Let’s write t := #F . The task is to find λ such that D′ = λD.

[
γ1 γ2 · · · γt

]

β1
β2
...
βt

D′ = −
[
γ1 γ2 · · · γt

]

α1

α2
...
αt

D

And thus λ can be easily computed in terms of −→γ , −→α , and
−→
β .
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GLS endomorphism extension

The GLS endomorphism extends an efficient endomorphism on the
jacobian, and it yields a factor n and n2 speedup on the smooth
divisors search and kernel element’s computation steps, respectively.


m1,1 m1,2 · · · m1, t

n

m2,1 m2,2 · · · m1, t
n

...
. . .

...
m t

n
,1 m t

n
,2 · · · m t

n
, t
n




D1

D2
...

D t
n

 =


α1

α2
...
α t

n

D +


β1
β2
...
β t

n

D′
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GLS endomorphism extension

This work
Velichka et al. work [4]

JMS EG
Estimate

Opt. EG
Estimate

Sieving
method

4-smooth divisors
search (CPU days)

1034.572 8492.67 6338.01 1720.818

Linear algebra step
(CPU days)

0.024 2.470 2.800 14.244

Total (CPU days) 1034.597 8495.650 6340.810 1735.063

Speedup: 8.212 6.129 1.677

Table 1: Index-Calculus based algorithm: DLP computation on a hyperelliptic
genus-32 curve H/F25 . The 2nd, 3rd, and 4th column show the timing esti-
mations of using the Enge-Gaudry algorithm with i) the strategy and optimal
parameters from [5], ii) an optimized version that incorporates large prime vari-
ations, and the sieve-based version of Vollmer’s algorithm, respectively.
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SIDH overview
SIDH framework [7, 6]:

• p = `eAA `
eB
B d − 1 is a prime number,

• E/Fp2 : y2 = x3 + Ax + B with #E(Fp2) = (p + 1)2 and

j(E) = 1728 4A3

4A3+27B2 .

• E [`eAA ](Fp2) = 〈PA,QA〉 and E [`eBB ](Fp2) = 〈PB ,QB〉.

General description SIDH:

RA ← [nA] + [mA]

RB ← [nB ] + [mB ]

E

E/〈RA,RB〉

The shared secret key is j(E/〈RA,RB〉), and the security is given by
the hardness of computing φA (or φB) given the data colored in red
ink (CSSI problem).
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Solving CSSI
The isogeny φA is the composition of eA degree-`A isogenies.

Figure 2: E/〈RA〉 is a degree-
(
26
)

isogenous curve to E .
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Solving CSSI
The isogeny φA is the composition of eA degree-`A isogenies.

Figure 2: There are 3 · 25 degree-
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Solving CSSI
Compute all the degree-`

eA/2
A isogenous curves to E and E/〈RA〉.

Figure 3: Degree-
(
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)

isogenous curves to E and E/〈RA〉.
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Solving CSSI (before this work)
The best known classical algorithm has a running-time of p1/4.
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Solving CSSI (before this work)
The best known quantum algorithm has a running-time of p1/6.

Figure 3: Degree-
(
23
)

isogenous curves to E and E/〈RA〉.
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Collision search

Firstly, The average-case time complexity of the Meet-in-the-middle
attack is 1.5N and it has space complexity N, where N ≈ (`A +
1)`eA/2−1 ≈ p1/4 (Infeasible for N ≥ 280).
Consequently, using m processors and w cells of memory, the running
time of MITM is approximately

(w/m + N/m)
N

w
≈ N2/(w ·m) ≈ p1/2/(w ·m).

Really? p1/2 is the square of p1/4. But don’t worry!, we can do it
better than p1/2.
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VW golden collision search

Let S be a finite set of size M. The goal is to find a collision for a
random function f : S → S .

Let’s define an element x of S to be distinguished if it has some
easily-testable distinguishing property, and let θ be the proportion of
distinguished elements of S . However, a random function f : S → S
is expected to have (M − 1)/2 unordered collisions.
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VW golden collision search

Let S be a finite set of size M. The goal is to find a collision for a
random function f : S → S .

Suppose we seek a particular one of these collisions, called the golden
collision, which can be efficiently recognized. Thus, one continues
generating distinguished points and collisions until the golden colli-
sion is encountered.
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VW golden collision search
The golden collision might occur with very small probability com-
pared to other collision. Consequently, it is necessary to change the
version of f periodically.

0

10
20

2

17

19
7

15 4

9

25

1 12 13

22

26

11

8

6
21

27

5

32423
18

16

14

Figure 4: Functional graph of a random function f : J0, 27K→ J0, 27K.
The desire golden collision is marked with Orange.
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VW golden collision search

Let

• w be the number of elements we can store in memory,

• θ = 2.25
√
w/M,

• 10w be the number of distinguished elements that each
version of f produces,

• 210 ≤ w ≤ M/210.

Heuristically, van Oorschot and Wiener saw that each version of
f generates approximately 1.3w collisions, of which approximately
1.1w are distinct [8, 9]. In addition, the expected running time to
find the golden collisions when m processors are employed is

1

m

(
2.5
√
M3/w

)
. (1)
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VW golden collision search
Consequently, the expected running time for solving CSSI problem
VW golden collision search is

1

m

(
2.5
√

8N3/w
)
≈ 7.1p3/8/(w1/2m)� p1/2/(w ·m)

e p w 28 210 212 214 216

50 250331179− 1 c1 1.37 1.36 1.37 1.41 1.49

c2 1.14 1.12 1.12 1.11 1.09

60 26033731− 1 c1 1.37 1.34 1.34 1.35 1.36

c2 1.15 1.13 1.13 1.12 1.12

70 270332127− 1 c1 1.33 1.34 1.34 1.34 1.34

c2 1.13 1.14 1.13 1.13 1.13

80 28032571− 1 c1 1.35 1.32 1.33 1.34 1.33

c2 1.14 1.12 1.13 1.13 1.13

Table 2: Observed number c1w of collisions and number c2w of distinct
collisions per CSSI-based random function fn.
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Solving CSSI problem: 128-, 160-, 192-bit
security

p ≈ 2448 p ≈ 2512 p ≈ 2536 p ≈ 2614

# processors space calendar total calendar total calendar total calendar total
m w time time time time time time time time

Meet-in-the-middle using Depth-first search
48 64 106 154 138 186 150 198 188 236
48 80 90 138 122 170 134 182 172 220
64 80 74 138 106 170 118 182 156 220

van Oorschot and Wiener golden collision search
48 64 88 136 112 160 121 169 149 197
48 80 80 128 104 152 113 161 141 189
64 80 64 128 88 152 97 161 125 189

Table 3: Time complexity estimates of CSSI attacks for p ≈ 2448, p ≈
2512, p ≈ 2536 and p ≈ 2614. All numbers are expressed in their base-2
logarithms. The unit of time is a 2e/2-isogeny computation 1, and we are
ignoring communication costs.

Conclusion: MITM is more costly than VW golden collision search.
1Calendar time is the elapsed time taken for a computation, whereas total

time is the sum of the time expended by all m processors.
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Comments about quantum attacks

Tani’s algorithm

The fastest known quantum attack on CSSI is Tani’s algorithm
[13], which has an running time equal to O(p1/6) and requires
O(p1/6) space.

Grover’s algorithm

Clearly, CSSI can also be solved by an application of Grover’s
quantum search [10], which has a running time equal to O(p1/4).
However, using m quantum circuits only yields a speedup by a
factor of

√
m [11].

Tani vs Grover: the recent work of Jaques and Schanck argue that
Tani’s algorithm cost the same (up to poly-log factors) as Grover’ s
search in realistic models of quantum computation [14].
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Comments about quantum attacks
Assuming that the maximum circuit depth is 2k , the number of
quantum circuits needed to perform Grover’s search in one year for

p ≈ 2r is approximately
(
2
r
4

2k

)2
.

Maximum depth of p ≈ 2448 p ≈ 2512 p ≈ 2536 p ≈ 2614

a quantum circuit m m m m

40 144 176 188 227

64 96 128 140 179

Table 4: Number of quantum circuits needed to perform Grover’s search
in one year for p ≈ 2448, p ≈ 2512, p ≈ 2536, and p ≈ 2614. All numbers
are expressed in their base-2 logarithms. In particular, the NIST suggests
that 240 is the maximum depth of a quantum circuit that can be executed
in one year using presently envisioned quantum computing architectures
[12].

Conclusion: Gorver is more costly than VW golden collision search.
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CSIDH overview

CSIDH framework [15]:

• Small odd primes numbers `i such that p = 4
∏n

i=1 `i − 1 is
prime number;

• Supersingular elliptic curves in Montgomery form
EA/Fp : y2 = x3 + Ax2 + x with #E (Fp) = p + 1; and

• Positive integer m.

General description CSIDH:

The shared secret key is (a · b) ∗ EA.

The security is given by the hardness
of computing a (or b) given the data
colored in red ink.

EA a ∗ EA

b ∗ EA (a · b) ∗ EA

a

b b

a∗EA

b∗EA

a

Each `i is required ei times for evaluating the action a∗EA (similarly
for b ∗ EA). Formally, this is written as a = le11 · · · lenn .
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CSIDH overview
The action a ∗ EA defines a path
on the isogeny graph over Fp,
and is determined by an integer
vector (e1, . . . , en) ∈ J−m,mKn:

1) Nodes are supersingular el-
liptic curves over Fp in
Montgomery form;

2) Edges are degree-`i isoge-
nies.

Two types of edges:
isogeny with kernel gener-
ated by

2.a) (x , y) ∈ EA[`i , π − 1], or
2.b) (x , iy) ∈ EA[`i , π + 1].

Here, x , y ∈ Fp, π : (X ,Y ) 7→
(X p,Y p) is the Frobenius map,
i =
√
−1 and thus ip = −i .

Figure 5: Isogeny graph over Fp

with p = 4 · (5 · 13 · 61)− 1. Nodes
are supersingular curves and edges
marked with orange, green , and vi-
olet inks denote isogenies of degree
5, 13 and 61, respectively.
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CSIDH overview

Figure 6: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. Secret integer
vector (−1, 2, 1) ∈ J−2, 2K3:

E0
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Constant-time CSIDH algorithm [16, 25]

In both the original CSIDH and the Onuki et al. variants ei ∈
J−mi ,miK, while in Meyer-Campos-Reith variant ei ∈ J0,miK. How-
ever, in constant-time implementations of CSIDH, the exponents ei
are implicitly interpreted as

|ei | = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
ei times

+ 0 + 0 + · · ·︸ ︷︷ ︸
mi−ei times

,

and then it starts by constructing isogenies with kernel generated
by P ∈ EA[`i , π − sign(ei )] for ei iterations, then performs dummy
isogeny computations for (mi − ei ) = 2ki iterations.
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Constant-time CSIDH algorithm [16, 25]

Figure 7: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0
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CSIDH with dummy operations

To mitigate power consumption analysis attacks, the constant-time
algorithms proposed in [16] and [25] always compute the maximal
amount of isogenies allowed by the exponent, using dummy isogeny
computations if needed.

This implies that an attacker can obtain information on the secret
key by injecting faults into variables during the computation. If the
final result is correct, then she knows that the fault was injected in
a dummy operation; if it is incorrect, then the operation was real.
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Removing dummy operations

For our new approach, the exponents ei are uniformly sampled from
sets

S(mi ) = {e | e = mi mod 2 and |e| ≤ mi},

i.e., centered intervals containing only even or only odd integers.
Consequently, the exponents ei can implicitly interpreted as

|ei | = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
ei times

+ (1− 1)− (1− 1) + (1− 1)− · · ·︸ ︷︷ ︸
mi−ei times

,

and then our approach starts by constructing isogenies with kernel
generated by P ∈ EA[`i , π − sign(ei )] for ei iterations, then alter-
nates between isogenies with kernel generated by P ∈ EA[`i , π − 1]
and P ∈ EA[`i , π + 1] for (mi − ei ) = 2ki iterations.
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Removing dummy operations

Figure 8: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0
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Running-time: field operations

Table 5: Field operation counts for constant-time CSIDH. Counts are
given in millions of operations, averaged over 1024 random experiments.
The performance ratio uses [16] as a baseline, considers only
multiplication and squaring operations, and assumes M = S .

Implementation CSIDH Algorithm M S A Ratio
Castryck et al. [15] unprotected, unmodified 0.252 0.130 0.348 0.26

Meyer–Campos–Reith [16] unmodified 1.054 0.410 1.053 1.00

Onuki et al. [25] unmodified 0.733 0.244 0.681 0.67

This work
MCR-style 0.901 0.309 0.965 0.83

OAYT-style 0.657 0.210 0.691 0.59
No-dummy 1.319 0.423 1.389 1.19
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Running-time: measured clock cycles

Table 6: Clock cycle counts for constant-time CSIDH implementations,
averaged over 1024 experiments. The ratio is computed using [16] as
baseline implementation.

Implementation CSIDH algorithm Mcycles Ratio
Castryck et al. [15] unprotected, unmodified 155 0.39

Meyer–Campos–Reith [16] unmodified 395 1.00

This work
MCR-style 337 0.85

OAYT-style 239 0.61
No-dummy 481 1.22
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GHS Weil descent and GLS endomorphism

• The GLS endomorphism extends an efficient endomorphism on
the jacobian, and it yields a factor n and n2 speedup on the
smooth divisors search and kernel element’s computation steps,
respectively.

• Our analysis is backed up by the explicit computation of a DLP
defined on a prime order subgroup of a GLS elliptic curve over
the field F25·31 . A Magma-code implementation of a standard
index-calculus procedure boosted with the GLS endomorphism
is able to find this discrete logarithm in about 1, 035 CPU days.

• This is the first work showing that one endomorphism on the
elliptic curve is “preserved” by the GHS weil descent technique.
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CSSI

• We showed that VW Golden Collision search can be used to
solve CSSI.

• First implementations of MITM and Golden collision search
CSSI attacks reported.

• The implementations confirm that the performance of these
attacks is accurately predicted by their heuristic analysis.

• Our concrete cost analysis of the attacks leads to the conclusion
that golden collision search is more cost effective than the meet-
in-the-middle attack.
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CSSI
• As a consequence, our security analysis has strongly impacted

on the post-quantum cryptography community, to the point
of being endorsed by the SIKE protocol designers and pushing
them to use our proposed smaller prime integer numbers.

Protocol CLN library [19] CLN + enhancements
phase p751 p434 p546 p751 p434 p546

Key
Gen.

Alice 35.7 7.51 13.20 26.9 5.3 10.5

Bob 39.9 8.32 14.84 30.5 6.0 11.7

Shared
Secret

Alice 33.6 7.01 12.56 24.9 5.0 10.0

Bob 38.4 7.94 14.35 28.6 5.8 11.5

Table 7: Performance of the SIDH protocol. All timings are reported in
106 clock cycles, measured on an Intel Core i7-6700 supporting a Sky-
lake micro-architecture. The “CLN + enhancements” columns are for
our implementation that incorporates improved formulas for degree-4 and
degree-3 isogenies from [17] and Montgomery ladders from [18] into the
CLN library.
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CSIDH

1) Previous implementations failed at being constant time because
of a subtle mistake (Elligator was being used in an insecure
way).

2) We fixed the problem, and proposed new improvements, to
achieve the most efficient version of CSIDH protected against
timing and simple power analysis attacks to date.

3) We proposed a protection against some fault-injection and tim-
ing attacks that only comes at a cost of a twofold slowdown.
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Publications

[26] Jesús-Javier Chi and Thomaz Oliveira, “Attacking a Binary GLS Elliptic
Curve with Magma”, Progress in Cryptology - LATINCRYPT 2015,
LNCS 9230 (2015), 308–326.

[27] Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-Doḿınguez,
Alfred Menezes, Francisco Rodŕıguez-Henŕıquez, “On the Cost of
Compu-ting Isogenies Between Supersingular Elliptic Curves”, Selected
Areas in Cryptography — SAC 2019. LNCS 11349 (2018), 322–343.

[28] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier
Chi-Doḿın-guez, Luca De Feo, Francisco Rodŕıguez-Henŕıquez, and
Benjamin Smith, “Stronger and Faster Side-Channel Protections for
CSIDH”, Progress in Cryptology - LATINCRYPT 2019. LNCS 11774
(2019), 173-193

Additionally, the following work has been submitted to the indexed journal
Finite Fields and Their Applications, which is still under revision.

• Jesús-Javier Chi-Doḿınguez, Francisco Rodŕıguez-Henŕıquez, and
Be-njamin Smith, “Extending the GLS endomorphism to speedup the
GHS Weil descent using Magma”.
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Forthcoming research

• Constructive aspects of genus-2 curve based cryptography: GLS
endomorphism of a GLS curve E/F22n induces an efficient en-
domorphism Ψ∗ on the jacobian of the image of the GHS Weil
descent applied on E/F22n .

• How does VW golden collision search CSSI attack behave in a
cuda-code implementation on GPU’s?

• Analysis of the VW (golden?) collision search CSSI attack but
applied to CSIDH protocol must be done.

• Study of practical implications of using radix-tree in VW golden
collision search CSSI attack.

• Design of a conservative CSIDH protocol (with respect to quan-
tum attacks).
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Thank you for your attention
I look forward to your comments and questions.
e-mail: jjchi@computacion.cs.cinvestav.mx

Elliptic-curve based crypto:
moving from cities to cities.

Isogeny-based crypto: mov-
ing from planets to planets
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Index-calculus based algorithms I

Let As′ be the number of irreducible divisors div(u, v) ∈ JacH(Fq)
with deg u = s ′, then

As′ ≈
1

2

 1

s ′

∑
d |s′

µ

(
s ′

d

)
qd

 , (2)

where µ denotes the Möbius function, i.e., for every positive integer
n we have

µ(n) =

 (−1)k
if n is square free and has
k different prime factors,

0 if n is not square free.
(3)
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Index-calculus based algorithms II
Consequently, #Fs ≈

∑s
i=1 Ai . On the other hand, the number of

s-smooth divisors div(u, v) ∈ JacH(Fq) with deg u ≤ g is given as

M(g , s) =

g∑
i=1

[x i] s∏
s′=1

(
1 + x s

′

1− x s′

)As′
 , (4)

where [.] denotes the coefficient operator. However, when As′ is
known, M(g , s) can be computed by finding the first (g+1) terms of

the Taylor expansion of
∏s

s′=1

(
1+xs

′

1−xs′
)As′

around x = 0, and adding

the coefficients of x , x2, . . . , xg . Thus, the expected number of
random-walk iterations before a t-smooth divisor is encountered is

E (s) =
#JacH(Fq)

M(g , s)
≈ qg

M(g , s)
. (5)
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Index-calculus based algorithms III
In addition, the expected number of random-walk iterations before(
#Fs + ε

)
relations are generated is

T (s) = (#Fs + ε)E (s). (6)

With respect to the linear algebra task, the running time of the
Lanczo’s algorithm employed by magma can be approximated by,
L(s) ≈ d ·

(
#Fs + ε

)2
, where d denotes the per-row density of the

matrix M. In fact, it can be shown that d ≤ g .
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GHS weil descent technique

The genus-g algebraic curve C/F2n (not necessary hyperelliptic) that
the generalized GHS (gGHS) Weil descent technique computes can
be obtained by constructing the Weil restriction A/F2n of E/F2n×` ,
intersecting A/F2n with (` − 1)-dimensional hyperplanes to obtain
a subvariety A′/Fq of A/F2n , and finding an irreducible component
C/F2n of A′/F2n (for more details see [21, 22, 23, 24]).

The Weil restriction is just writing the equation of E/F2n×` in terms
of a F2`-basis of F2n×` .

The explict description of the extending endomorphism is given as
follows:

Ψ?(div(u, v)
)

= div

(
δdeg u
1 · (σu)

( x

δ1

)
, δ3(σv)

( x

δ1

)
+ δ4

(σ
(h mod u)

)( x

δ1

))
.

for some δ1, δ3, δ4 ∈ F2n .
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CSSI-based random function fn I

fn is defined as the composition gn ◦ φR ◦ h.

x ∈ {0, 1, 2} ×
r

0, 2( e
2
−1) − 1

z

h

R = h(x) ∈ E
[
2

e
2
] φR

j = j
(
E/〈R〉

)
∈ Fp2

gn = MD5 e
2
+2(1, j , n, counter)
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Random points

Algorithm 1: Constant-time projective Elligator

Input: A supersingular curve
E(A′:C ′) : C ′y2 = C ′x3 + A′x2 + C ′x over Fp, and a

random element u ∈ {2, . . . , p−12 }.
Output: A pair of points T+ ∈ E(A′:C ′)[π − 1] and

T− ∈ E(A′:C ′)[π + 1].

1 t ← A′
(
(u2 − 1)u2A′2C ′ + ((u2 − 1)C ′)3

)
;

2 a← isequal(t, 0) ; // t = 0 iff A′ = 0
3 α, β ← 0, u ;
4 cswap(α, β, a) ; // α = 0 iff A′ 6= 0
5 t ′ ← t + α(u2 + 1) ; // t ′ 6= 0
6 T+ ← (A′ + αC ′(u2 − 1) : C ′(u2 − 1)) ;
7 T− ← (−A′u2 − αC ′(u2 − 1) : C ′(u2 − 1)) ;
8 b ← Legendre symbol(t ′, p) ; // b = ±1
9 c ← isequal(b,−1) ;

10 cswap(T+,T−, c);
11 return (T+,T−) ;
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