
Let us walk on the 3-isogeny graph:
efficient, fast, and simple

CHES 2025

Jesús-Javier Chi-Domínguez 1, Eduardo Ochoa-Jimenez 1, Ricardo-Neftalí Pontaza-Rodas1

1 Cryptography Research Center, Technology Innovation Institute, Abu Dhabi, UAE
{jesus.dominguez,eduardo.ochoa,ricardo.pontaza}@tii.ae

September 17, 2025



1 Preliminaries

2 Contributions

3 On the application to QFESTA

4 On the application to dCTIDH

5 Additional remarks

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 2



Preliminaries

Along the talk, we consider

• Prime numbers p such that p ≡ 3 mod 4.
• Supersingular elliptic curves E with #E(Fp2) = (p± 1)2 points where Fp2 = Fp[i]/(i2 + 1).
• Unless we specify a different model, we center on elliptic curves in Montgomery form (i.e,

E : y2 = x3 + Ax2 + x for some A ∈ Fp2 ).
• Small ℓ-isogenies ϕ with cyclic kernels of size ℓ ∈ {2, 3}.
• Length-n chains of ℓ-isogenies with non-backtracking (i.e., ϕi+1 different from ϕ̂i)

E0 := E ℓ-isogeny−−−−−→
ϕ1

E1
ℓ-isogeny−−−−−→

ϕ2
E2

ℓ-isogeny−−−−−→
ϕ3

· · · ℓ-isogeny−−−−−→
ϕn

E ′ := En

Each ℓ-isogeny path connecting E0 and En can be encoded by a length-n list of integers in [1, ℓ− 1]
when given E−1.

Charles-Goren-Lauter hash function

The Charles-Goren-Lauter hash function [3] determined by E0 and E−1 is defined as

CGLHashℓ : {1, . . . , ℓ− 1}∗ → Fp2

path 7→ j(En)
(1)

where n = #path and En is the end curve of the length-n ℓ-isogeny chain determined by path.

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 3



Preliminaries

Along the talk, we consider

• Prime numbers p such that p ≡ 3 mod 4.
• Supersingular elliptic curves E with #E(Fp2) = (p± 1)2 points where Fp2 = Fp[i]/(i2 + 1).
• Unless we specify a different model, we center on elliptic curves in Montgomery form (i.e,

E : y2 = x3 + Ax2 + x for some A ∈ Fp2 ).
• Small ℓ-isogenies ϕ with cyclic kernels of size ℓ ∈ {2, 3}.
• Length-n chains of ℓ-isogenies with non-backtracking (i.e., ϕi+1 different from ϕ̂i)

E0 := E ℓ-isogeny−−−−−→
ϕ1

E1
ℓ-isogeny−−−−−→

ϕ2
E2

ℓ-isogeny−−−−−→
ϕ3

· · · ℓ-isogeny−−−−−→
ϕn

E ′ := En

Each ℓ-isogeny path connecting E0 and En can be encoded by a length-n list of integers in [1, ℓ− 1]
when given E−1.

Charles-Goren-Lauter hash function

The Charles-Goren-Lauter hash function [3] determined by E0 and E−1 is defined as

CGLHashℓ : {1, . . . , ℓ− 1}∗ → Fp2

path 7→ j(En)
(1)

where n = #path and En is the end curve of the length-n ℓ-isogeny chain determined by path.

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 3



Preliminaries

Along the talk, we consider

• Prime numbers p such that p ≡ 3 mod 4.
• Supersingular elliptic curves E with #E(Fp2) = (p± 1)2 points where Fp2 = Fp[i]/(i2 + 1).
• Unless we specify a different model, we center on elliptic curves in Montgomery form (i.e,

E : y2 = x3 + Ax2 + x for some A ∈ Fp2 ).
• Small ℓ-isogenies ϕ with cyclic kernels of size ℓ ∈ {2, 3}.
• Length-n chains of ℓ-isogenies with non-backtracking (i.e., ϕi+1 different from ϕ̂i)

E0 := E ℓ-isogeny−−−−−→
ϕ1

E1
ℓ-isogeny−−−−−→

ϕ2
E2

ℓ-isogeny−−−−−→
ϕ3

· · · ℓ-isogeny−−−−−→
ϕn

E ′ := En

Each ℓ-isogeny path connecting E0 and En can be encoded by a length-n list of integers in [1, ℓ− 1]
when given E−1.

Charles-Goren-Lauter hash function

The Charles-Goren-Lauter hash function [3] determined by E0 and E−1 is defined as

CGLHashℓ : {1, . . . , ℓ− 1}∗ → Fp2

path 7→ j(En)
(1)

where n = #path and En is the end curve of the length-n ℓ-isogeny chain determined by path.

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 3



Preliminaries

Along the talk, we consider

• Prime numbers p such that p ≡ 3 mod 4.
• Supersingular elliptic curves E with #E(Fp2) = (p± 1)2 points where Fp2 = Fp[i]/(i2 + 1).
• Unless we specify a different model, we center on elliptic curves in Montgomery form (i.e,

E : y2 = x3 + Ax2 + x for some A ∈ Fp2 ).
• Small ℓ-isogenies ϕ with cyclic kernels of size ℓ ∈ {2, 3}.
• Length-n chains of ℓ-isogenies with non-backtracking (i.e., ϕi+1 different from ϕ̂i)

E0 := E ℓ-isogeny−−−−−→
ϕ1

E1
ℓ-isogeny−−−−−→

ϕ2
E2

ℓ-isogeny−−−−−→
ϕ3

· · · ℓ-isogeny−−−−−→
ϕn

E ′ := En

Each ℓ-isogeny path connecting E0 and En can be encoded by a length-n list of integers in [1, ℓ− 1]
when given E−1.

Charles-Goren-Lauter hash function

The Charles-Goren-Lauter hash function [3] determined by E0 and E−1 is defined as

CGLHashℓ : {1, . . . , ℓ− 1}∗ → Fp2

path 7→ j(En)
(1)

where n = #path and En is the end curve of the length-n ℓ-isogeny chain determined by path.

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 3



Preliminaries

Along the talk, we consider

• Prime numbers p such that p ≡ 3 mod 4.
• Supersingular elliptic curves E with #E(Fp2) = (p± 1)2 points where Fp2 = Fp[i]/(i2 + 1).
• Unless we specify a different model, we center on elliptic curves in Montgomery form (i.e,

E : y2 = x3 + Ax2 + x for some A ∈ Fp2 ).
• Small ℓ-isogenies ϕ with cyclic kernels of size ℓ ∈ {2, 3}.
• Length-n chains of ℓ-isogenies with non-backtracking (i.e., ϕi+1 different from ϕ̂i)

E0 := E ℓ-isogeny−−−−−→
ϕ1

E1
ℓ-isogeny−−−−−→

ϕ2
E2

ℓ-isogeny−−−−−→
ϕ3

· · · ℓ-isogeny−−−−−→
ϕn

E ′ := En

Each ℓ-isogeny path connecting E0 and En can be encoded by a length-n list of integers in [1, ℓ− 1]
when given E−1.

Charles-Goren-Lauter hash function

The Charles-Goren-Lauter hash function [3] determined by E0 and E−1 is defined as

CGLHashℓ : {1, . . . , ℓ− 1}∗ → Fp2

path 7→ j(En)
(1)

where n = #path and En is the end curve of the length-n ℓ-isogeny chain determined by path.

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 3



Preliminaries

Along the talk, we consider

• Prime numbers p such that p ≡ 3 mod 4.
• Supersingular elliptic curves E with #E(Fp2) = (p± 1)2 points where Fp2 = Fp[i]/(i2 + 1).
• Unless we specify a different model, we center on elliptic curves in Montgomery form (i.e,

E : y2 = x3 + Ax2 + x for some A ∈ Fp2 ).
• Small ℓ-isogenies ϕ with cyclic kernels of size ℓ ∈ {2, 3}.
• Length-n chains of ℓ-isogenies with non-backtracking (i.e., ϕi+1 different from ϕ̂i)

E−1
ℓ-isogeny−−−−−→

ϕ0
E0 := E ℓ-isogeny−−−−−→

ϕ1
E1

ℓ-isogeny−−−−−→
ϕ2

E2
ℓ-isogeny−−−−−→

ϕ3
· · · ℓ-isogeny−−−−−→

ϕn
E ′ := En

Each ℓ-isogeny path connecting E0 and En can be encoded by a length-n list of integers in [1, ℓ− 1]
when given E−1.

Charles-Goren-Lauter hash function

The Charles-Goren-Lauter hash function [3] determined by E0 and E−1 is defined as

CGLHashℓ : {1, . . . , ℓ− 1}∗ → Fp2

path 7→ j(En)
(1)

where n = #path and En is the end curve of the length-n ℓ-isogeny chain determined by path.

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 3



Preliminaries

Along the talk, we consider

• Prime numbers p such that p ≡ 3 mod 4.
• Supersingular elliptic curves E with #E(Fp2) = (p± 1)2 points where Fp2 = Fp[i]/(i2 + 1).
• Unless we specify a different model, we center on elliptic curves in Montgomery form (i.e,

E : y2 = x3 + Ax2 + x for some A ∈ Fp2 ).
• Small ℓ-isogenies ϕ with cyclic kernels of size ℓ ∈ {2, 3}.
• Length-n chains of ℓ-isogenies with non-backtracking (i.e., ϕi+1 different from ϕ̂i)

E−1
ℓ-isogeny−−−−−→

ϕ0
E0 := E ℓ-isogeny−−−−−→

ϕ1
E1

ℓ-isogeny−−−−−→
ϕ2

E2
ℓ-isogeny−−−−−→

ϕ3
· · · ℓ-isogeny−−−−−→

ϕn
E ′ := En

Each ℓ-isogeny path connecting E0 and En can be encoded by a length-n list of integers in [1, ℓ− 1]
when given E−1.

Charles-Goren-Lauter hash function

The Charles-Goren-Lauter hash function [3] determined by E0 and E−1 is defined as

CGLHashℓ : {1, . . . , ℓ− 1}∗ → Fp2

path 7→ j(En)
(1)

where n = #path and En is the end curve of the length-n ℓ-isogeny chain determined by path.

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 3



1 Preliminaries

2 Contributions

3 On the application to QFESTA

4 On the application to dCTIDH

5 Additional remarks

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 4



Contributions (over Fp2 )

Get x-coordinate
of an order-3 point

From Montgomery model to 3-isogeny model

Length-m 3-isogeny
walk given by path

Calculate
j-invariant

Initial Setup

CGLHash3

F : y2 = x3 + Ax2 + x
xP

E

path E ′ j(E ′)

Figure: The superingular elliptic curves E and E ′ are defined over Fp2 and given in the curve model from [2].

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 5



Contributions (over Fp)

Get projective
x-coordinate of
an order-3 point

Calculate
3-isogeny chain

Get Montgomery
curve

Initial Setup

Radical 3-isogenies

E , e

e

t

t′ E ′

Figure: The superingular elliptic curves E and E ′ are defined over Fp and given in Montgomery curve form. The block
computations describe an efficient projective version of the radical 3-isogeny formulas of [6]

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 6



1 Preliminaries

2 Contributions

3 On the application to QFESTA

4 On the application to dCTIDH

5 Additional remarks

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 7



On the application to QFESTA

QFESTA parameter set Original Proposed
QFESTA-128 p398 = 23·130 · 3 · 55− 1 p381 = 23·124 · 437− 1
QFESTA-192 p592 = 23·194 · 3 · 307− 1 p575 = 23·189 · 139− 1
QFESTA-256 p783 = 23·258 · 3 · 137− 1 p765 = 23·252 · 257− 1

Primes bit-length for small
(64t+ δ) (64t− δ)

δ ≪ 64 and an integer t

• The security analysis of [5] highlights a time complexity for breaking QFESTA of at least Õ(2a)
where p = 23a · 3 · f − 1.

• Our results allow primes not restricted to the form p = 23a · 3 · f − 1. They allow a more efficient
arithmetic implementation in terms of bit operations since they have one less 64-bits word.

• If we look for smaller (64t− δ)-bits primes of the form p = 23a · 3 · f − 1, we end up with
parameters with a lower security level than our proposals (i.e., much smaller values of a).

• Our experiments illustrate an improvement between 26.41% and 35.60% in savings for 3-isogeny
chain required in QFESTA.

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 8



On the application to QFESTA

QFESTA parameter set Original Proposed
QFESTA-128 p398 = 23·130 · 3 · 55− 1 p381 = 23·124 · 437− 1
QFESTA-192 p592 = 23·194 · 3 · 307− 1 p575 = 23·189 · 139− 1
QFESTA-256 p783 = 23·258 · 3 · 137− 1 p765 = 23·252 · 257− 1

Primes bit-length for small
(64t+ δ) (64t− δ)

δ ≪ 64 and an integer t

• The security analysis of [5] highlights a time complexity for breaking QFESTA of at least Õ(2a)
where p = 23a · 3 · f − 1.

• Our results allow primes not restricted to the form p = 23a · 3 · f − 1. They allow a more efficient
arithmetic implementation in terms of bit operations since they have one less 64-bits word.

• If we look for smaller (64t− δ)-bits primes of the form p = 23a · 3 · f − 1, we end up with
parameters with a lower security level than our proposals (i.e., much smaller values of a).

• Our experiments illustrate an improvement between 26.41% and 35.60% in savings for 3-isogeny
chain required in QFESTA.

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 8



On the application to QFESTA

QFESTA parameter set Original Proposed
QFESTA-128 p398 = 23·130 · 3 · 55− 1 p381 = 23·124 · 437− 1
QFESTA-192 p592 = 23·194 · 3 · 307− 1 p575 = 23·189 · 139− 1
QFESTA-256 p783 = 23·258 · 3 · 137− 1 p765 = 23·252 · 257− 1

Primes bit-length for small
(64t+ δ) (64t− δ)

δ ≪ 64 and an integer t

• The security analysis of [5] highlights a time complexity for breaking QFESTA of at least Õ(2a)
where p = 23a · 3 · f − 1.

• Our results allow primes not restricted to the form p = 23a · 3 · f − 1. They allow a more efficient
arithmetic implementation in terms of bit operations since they have one less 64-bits word.

• If we look for smaller (64t− δ)-bits primes of the form p = 23a · 3 · f − 1, we end up with
parameters with a lower security level than our proposals (i.e., much smaller values of a).

• Our experiments illustrate an improvement between 26.41% and 35.60% in savings for 3-isogeny
chain required in QFESTA.

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 8



On the application to QFESTA

QFESTA parameter set Original Proposed
QFESTA-128 p398 = 23·130 · 3 · 55− 1 p381 = 23·124 · 437− 1
QFESTA-192 p592 = 23·194 · 3 · 307− 1 p575 = 23·189 · 139− 1
QFESTA-256 p783 = 23·258 · 3 · 137− 1 p765 = 23·252 · 257− 1

Primes bit-length for small
(64t+ δ) (64t− δ)

δ ≪ 64 and an integer t

• The security analysis of [5] highlights a time complexity for breaking QFESTA of at least Õ(2a)
where p = 23a · 3 · f − 1.

• Our results allow primes not restricted to the form p = 23a · 3 · f − 1. They allow a more efficient
arithmetic implementation in terms of bit operations since they have one less 64-bits word.

• If we look for smaller (64t− δ)-bits primes of the form p = 23a · 3 · f − 1, we end up with
parameters with a lower security level than our proposals (i.e., much smaller values of a).

• Our experiments illustrate an improvement between 26.41% and 35.60% in savings for 3-isogeny
chain required in QFESTA.

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 8



On the application to QFESTA

QFESTA parameter set Original Proposed
QFESTA-128 p398 = 23·130 · 3 · 55− 1 p381 = 23·124 · 437− 1
QFESTA-192 p592 = 23·194 · 3 · 307− 1 p575 = 23·189 · 139− 1
QFESTA-256 p783 = 23·258 · 3 · 137− 1 p765 = 23·252 · 257− 1

Primes bit-length for small
(64t+ δ) (64t− δ)

δ ≪ 64 and an integer t

• The security analysis of [5] highlights a time complexity for breaking QFESTA of at least Õ(2a)
where p = 23a · 3 · f − 1.

• Our results allow primes not restricted to the form p = 23a · 3 · f − 1. They allow a more efficient
arithmetic implementation in terms of bit operations since they have one less 64-bits word.

• If we look for smaller (64t− δ)-bits primes of the form p = 23a · 3 · f − 1, we end up with
parameters with a lower security level than our proposals (i.e., much smaller values of a).

• Our experiments illustrate an improvement between 26.41% and 35.60% in savings for 3-isogeny
chain required in QFESTA.

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 8



1 Preliminaries

2 Contributions

3 On the application to QFESTA

4 On the application to dCTIDH

5 Additional remarks

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 9



On the application to dCTIDH

We emphasize that

• The original dCTIDH work [1] focuses on key derivation and therefore assumes knowledge of a pair
of full torsion points, while our results focus on ephemeral key generation scenario.

• Our experiments illustrate a speedup of ≈2x on average, while in the best case scenario we obtain
close to 4x, for the dCTIDH key generation.

• The speedups in ephemeral key generation are primarily from the omission of the smallest ℓ’s
along with our optimized technique of finding a point of the correct order.

• The main advantage of our proposal is that it allows us to integrate it straightforwardly into the
dCTIDH protocol without changing the prime, that is, without looking for optimal dCTIDH
parameters, which are challenging to find, as addressed in [1].

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 10



On the application to dCTIDH

We emphasize that

• The original dCTIDH work [1] focuses on key derivation and therefore assumes knowledge of a pair
of full torsion points, while our results focus on ephemeral key generation scenario.

• Our experiments illustrate a speedup of ≈2x on average, while in the best case scenario we obtain
close to 4x, for the dCTIDH key generation.

• The speedups in ephemeral key generation are primarily from the omission of the smallest ℓ’s
along with our optimized technique of finding a point of the correct order.

• The main advantage of our proposal is that it allows us to integrate it straightforwardly into the
dCTIDH protocol without changing the prime, that is, without looking for optimal dCTIDH
parameters, which are challenging to find, as addressed in [1].

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 10



On the application to dCTIDH

We emphasize that

• The original dCTIDH work [1] focuses on key derivation and therefore assumes knowledge of a pair
of full torsion points, while our results focus on ephemeral key generation scenario.

• Our experiments illustrate a speedup of ≈2x on average, while in the best case scenario we obtain
close to 4x, for the dCTIDH key generation.

• The speedups in ephemeral key generation are primarily from the omission of the smallest ℓ’s
along with our optimized technique of finding a point of the correct order.

• The main advantage of our proposal is that it allows us to integrate it straightforwardly into the
dCTIDH protocol without changing the prime, that is, without looking for optimal dCTIDH
parameters, which are challenging to find, as addressed in [1].

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 10



On the application to dCTIDH

We emphasize that

• The original dCTIDH work [1] focuses on key derivation and therefore assumes knowledge of a pair
of full torsion points, while our results focus on ephemeral key generation scenario.

• Our experiments illustrate a speedup of ≈2x on average, while in the best case scenario we obtain
close to 4x, for the dCTIDH key generation.

• The speedups in ephemeral key generation are primarily from the omission of the smallest ℓ’s
along with our optimized technique of finding a point of the correct order.

• The main advantage of our proposal is that it allows us to integrate it straightforwardly into the
dCTIDH protocol without changing the prime, that is, without looking for optimal dCTIDH
parameters, which are challenging to find, as addressed in [1].

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 10



1 Preliminaries

2 Contributions

3 On the application to QFESTA

4 On the application to dCTIDH

5 Additional remarks

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 11



Additional remarks

p254 p255 p381 p383 p398 p511 p575 p592 p765 p783
0

1

2

3

4

5

6

7

8

×109

1.
7
×
10

8

1.
68

×
10

8

4.
2
×
10

8

6.
38

×
10

8

5.
64

×
10

8

1.
54

×
10

9

1.
67

×
10

9

2.
08

×
10

9

4.
85

×
10

9

5.
68

×
10

9

2.
06

×
10

8

1.
73

×
10

8

4.
25

×
10

8

6.
57

×
10

8

6.
6
×
10

8 1.
63

×
10

9

1.
73

×
10

9

2.
53

×
10

9

5.
07

×
10

9

6.
89

×
10

9

Primes

C
P
U

C
y
cl
es

2-isogenies
3-isogenies

Figure: Benchmarks for the 2-isogenies vs.
3-isogenies walks, measured in CPU cycles.

Open questions for future research:
• Can we speed up the cube-root calculation

over Fp2? This would imply that faster
radical 3-isogenies chains (potentially
faster than 2-isogeny chains!)

• Can radical 3-isogeny chains improve the
VDF proposed by Chávez-Saab,
Rodríguez-Henríquez, and Tibouchi [4]? It
could be the case since we have shorter
isogeny chains!

• Can we extend our results to the radical
5-isogeny scenario? A deterministic
algorithm for calculating order-5 points
(over arbitrary curves) reduce to finding
roots of a degree-6 polynomial!

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 12



Additional remarks

p254 p255 p381 p383 p398 p511 p575 p592 p765 p783
0

1

2

3

4

5

6

7

8

×109

1.
7
×
10

8

1.
68

×
10

8

4.
2
×
10

8

6.
38

×
10

8

5.
64

×
10

8

1.
54

×
10

9

1.
67

×
10

9

2.
08

×
10

9

4.
85

×
10

9

5.
68

×
10

9

2.
06

×
10

8

1.
73

×
10

8

4.
25

×
10

8

6.
57

×
10

8

6.
6
×
10

8 1.
63

×
10

9

1.
73

×
10

9

2.
53

×
10

9

5.
07

×
10

9

6.
89

×
10

9

Primes

C
P
U

C
y
cl
es

2-isogenies
3-isogenies

Figure: Benchmarks for the 2-isogenies vs.
3-isogenies walks, measured in CPU cycles.

Open questions for future research:
• Can we speed up the cube-root calculation

over Fp2? This would imply that faster
radical 3-isogenies chains (potentially
faster than 2-isogeny chains!)

• Can radical 3-isogeny chains improve the
VDF proposed by Chávez-Saab,
Rodríguez-Henríquez, and Tibouchi [4]? It
could be the case since we have shorter
isogeny chains!

• Can we extend our results to the radical
5-isogeny scenario? A deterministic
algorithm for calculating order-5 points
(over arbitrary curves) reduce to finding
roots of a degree-6 polynomial!

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 12



Additional remarks

p254 p255 p381 p383 p398 p511 p575 p592 p765 p783
0

1

2

3

4

5

6

7

8

×109

1.
7
×
10

8

1.
68

×
10

8

4.
2
×
10

8

6.
38

×
10

8

5.
64

×
10

8

1.
54

×
10

9

1.
67

×
10

9

2.
08

×
10

9

4.
85

×
10

9

5.
68

×
10

9

2.
06

×
10

8

1.
73

×
10

8

4.
25

×
10

8

6.
57

×
10

8

6.
6
×
10

8 1.
63

×
10

9

1.
73

×
10

9

2.
53

×
10

9

5.
07

×
10

9

6.
89

×
10

9

Primes

C
P
U

C
y
cl
es

2-isogenies
3-isogenies

Figure: Benchmarks for the 2-isogenies vs.
3-isogenies walks, measured in CPU cycles.

Open questions for future research:
• Can we speed up the cube-root calculation

over Fp2? This would imply that faster
radical 3-isogenies chains (potentially
faster than 2-isogeny chains!)

• Can radical 3-isogeny chains improve the
VDF proposed by Chávez-Saab,
Rodríguez-Henríquez, and Tibouchi [4]? It
could be the case since we have shorter
isogeny chains!

• Can we extend our results to the radical
5-isogeny scenario? A deterministic
algorithm for calculating order-5 points
(over arbitrary curves) reduce to finding
roots of a degree-6 polynomial!

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 12



Questions?

We thank Andreas Hellenbrand for the useful comments on the dCTIDH experiments.
Thanks for attending!

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 13



References I

[1] Fabio Campos, Andreas Hellenbrand, Michael Meyer, and Krijn Reijnders.
dCTIDH: Fast &; Deterministic CTIDH.
IACR Transactions on Cryptographic Hardware and Embedded Systems, 2025(3):516–541, Jun. 2025.

[2] Wouter Castryck, Thomas Decru, and Frederik Vercauteren.
Radical isogenies.
In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part II, volume 12492 of LNCS, pages 493–519.
Springer, Cham, December 2020.

[3] Denis Xavier Charles, Kristin E. Lauter, and Eyal Z. Goren.
Cryptographic hash functions from expander graphs.
Journal of Cryptology, 22(1):93–113, January 2009.

[4] Jorge Chávez-Saab, Francisco Rodríguez-Henríquez, and Mehdi Tibouchi.
Verifiable isogeny walks: Towards an isogeny-based postquantum VDF.
In Riham AlTawy and Andreas Hülsing, editors, SAC 2021, volume 13203 of LNCS, pages 441–460. Springer,
Cham, September / October 2022.

[5] Kohei Nakagawa and Hiroshi Onuki.
QFESTA: Efficient algorithms and parameters for FESTA using quaternion algebras.
In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part V, volume 14924 of LNCS, pages 75–106.
Springer, Cham, August 2024.

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 14



References II

[6] Hiroshi Onuki and Tomoki Moriya.
Radical isogenies on montgomery curves.
In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022, Part I, volume 13177 of LNCS, pages
473–497. Springer, Cham, March 2022.

✎ Let us walk on the 3-isogeny graph: efficient, fast, and simple 15


	Preliminaries
	Contributions
	On the application to QFESTA
	On the application to dCTIDH
	Additional remarks

