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Preliminaries

Along the talk, we consider

• Prime numbers p such that p ≡ 3 mod 4.
• Supersingular elliptic curves E with #E(Fp2) = (p± 1)2 points where Fp2 = Fp[i]/(i2 + 1).
• Unless we specify a different model, we center on elliptic curves in Montgomery form (i.e,

E : y2 = x3 + Ax2 + x for some A ∈ Fp2 ).
• Small ℓ-isogenies ϕ with cyclic kernels of size ℓ ∈ {2, 3}.
• Length-n chains of ℓ-isogenies with non-backtracking (i.e., ϕi+1 different from ϕ̂i)

E0 := E ℓ-isogeny−−−−−→
ϕ1

E1
ℓ-isogeny−−−−−→

ϕ2
E2

ℓ-isogeny−−−−−→
ϕ3

· · · ℓ-isogeny−−−−−→
ϕn

E ′ := En

Each ℓ-isogeny path connecting E0 and En can be encoded by a length-n list of integers in [1, ℓ− 1]
when given E−1.

Charles-Goren-Lauter hash function

The Charles-Goren-Lauter hash function [3] determined by E0 and E−1 is defined as

CGLHashℓ : {1, . . . , ℓ− 1}∗ → Fp2

path 7→ j(En)
(1)

where n = #path and En is the end curve of the length-n ℓ-isogeny chain determined by path.
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Contributions (over Fp2 )

Get x-coordinate
of an order-3 point

From Montgomery model to 3-isogeny model

Length-m 3-isogeny
walk given by path

Calculate
j-invariant

Initial Setup

CGLHash3

F : y2 = x3 + Ax2 + x
xP

E

path E ′ j(E ′)

Figure: The superingular elliptic curves E and E ′ are defined over Fp2 and given in the curve model from [2].
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Contributions (over Fp)

Get projective
x-coordinate of
an order-3 point

Calculate
3-isogeny chain

Get Montgomery
curve

Initial Setup

Radical 3-isogenies

E , e

e

t

t′ E ′

Figure: The superingular elliptic curves E and E ′ are defined over Fp and given in Montgomery curve form. The block
computations describe an efficient projective version of the radical 3-isogeny formulas of [6]
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On the application to QFESTA

QFESTA parameter set Original Proposed
QFESTA-128 p398 = 23·130 · 3 · 55− 1 p381 = 23·124 · 437− 1
QFESTA-192 p592 = 23·194 · 3 · 307− 1 p575 = 23·189 · 139− 1
QFESTA-256 p783 = 23·258 · 3 · 137− 1 p765 = 23·252 · 257− 1

Primes bit-length for small
(64t+ δ) (64t− δ)

δ ≪ 64 and an integer t

• The security analysis of [5] highlights a time complexity for breaking QFESTA of at least Õ(2a)
where p = 23a · 3 · f − 1.

• Our results allow primes not restricted to the form p = 23a · 3 · f − 1. They allow a more efficient
arithmetic implementation in terms of bit operations since they have one less 64-bits word.

• If we look for smaller (64t− δ)-bits primes of the form p = 23a · 3 · f − 1, we end up with
parameters with a lower security level than our proposals (i.e., much smaller values of a).

• Our experiments illustrate an improvement between 26.41% and 35.60% in savings for 3-isogeny
chain required in QFESTA.
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On the application to QFESTA

QFESTA parameter set Original Proposed
QFESTA-128 p398 = 23·130 · 3 · 55− 1 p381 = 23·124 · 437− 1
QFESTA-192 p592 = 23·194 · 3 · 307− 1 p575 = 23·189 · 139− 1
QFESTA-256 p783 = 23·258 · 3 · 137− 1 p765 = 23·252 · 257− 1

Primes bit-length for small
(64t+ δ) (64t− δ)

δ ≪ 64 and an integer t

• The security analysis of [5] highlights a time complexity for breaking QFESTA of at least Õ(2a)
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On the application to dCTIDH

We emphasize that

• The original dCTIDH work [1] focuses on key derivation and therefore assumes knowledge of a pair
of full torsion points, while our results focus on ephemeral key generation scenario.

• Our experiments illustrate a speedup of ≈2x on average, while in the best case scenario we obtain
close to 4x, for the dCTIDH key generation.

• The speedups in ephemeral key generation are primarily from the omission of the smallest ℓ’s
along with our optimized technique of finding a point of the correct order.

• The main advantage of our proposal is that it allows us to integrate it straightforwardly into the
dCTIDH protocol without changing the prime, that is, without looking for optimal dCTIDH
parameters, which are challenging to find, as addressed in [1].
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Additional remarks
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Figure: Benchmarks for the 2-isogenies vs.
3-isogenies walks, measured in CPU cycles.

Open questions for future research:
• Can we speed up the cube-root calculation

over Fp2? This would imply that faster
radical 3-isogenies chains (potentially
faster than 2-isogeny chains!)

• Can radical 3-isogeny chains improve the
VDF proposed by Chávez-Saab,
Rodríguez-Henríquez, and Tibouchi [4]? It
could be the case since we have shorter
isogeny chains!

• Can we extend our results to the radical
5-isogeny scenario? A deterministic
algorithm for calculating order-5 points
(over arbitrary curves) reduce to finding
roots of a degree-6 polynomial!
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could be the case since we have shorter
isogeny chains!

• Can we extend our results to the radical
5-isogeny scenario? A deterministic
algorithm for calculating order-5 points
(over arbitrary curves) reduce to finding
roots of a degree-6 polynomial!
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Questions?

We thank Andreas Hellenbrand for the useful comments on the dCTIDH experiments.
Thanks for attending!
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