
A quick journey on what SI[DH/KE] is
ASCRYPTO 2021 - cryptography summer school

Jesús-Javier Chi-Domínguez 1

1 Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi, UAE
jesus.dominguez@tii.ae

October 4, 2021



1 SIDH at glance

2 Kummer line arithmetic and isogenies

3 Describing SI[DH/KE] main blocks

4 Hard problem on SI[DH/KE]

. A quick journey on what SI[DH/KE] is 2



Framework: Notation

Finite Fields

• Fq: finite field with q elements
• F∗q : multiplicative group (invertible elements)

• exponentiation: gk = g× · · · × g︸ ︷︷ ︸
k times

Elliptic curves

• E(Fq): group of Fq-rational points on the curve E
• point at infinityO: neutral element in E(Fq)

• scalar point multiplication: [k]P = P+ · · ·+ P︸ ︷︷ ︸
k times

• order-d point P: [d]P = O
• x(P): x-coordinate of a point P

Common notation

• p: prime number
• q: a power of p (either p or p2)
• Ja . . bK: integers in the interval [a, b]

• $←−: random selection from a given set

. A quick journey on what SI[DH/KE] is 3



Framework: Notation

Finite Fields

• Fq: finite field with q elements
• F∗q : multiplicative group (invertible elements)

• exponentiation: gk = g× · · · × g︸ ︷︷ ︸
k times

Elliptic curves

• E(Fq): group of Fq-rational points on the curve E
• point at infinityO: neutral element in E(Fq)

• scalar point multiplication: [k]P = P+ · · ·+ P︸ ︷︷ ︸
k times

• order-d point P: [d]P = O
• x(P): x-coordinate of a point P

Common notation

• p: prime number
• q: a power of p (either p or p2)
• Ja . . bK: integers in the interval [a, b]

• $←−: random selection from a given set

. A quick journey on what SI[DH/KE] is 3



Framework: Notation

Finite Fields

• Fq: finite field with q elements
• F∗q : multiplicative group (invertible elements)

• exponentiation: gk = g× · · · × g︸ ︷︷ ︸
k times

Elliptic curves

• E(Fq): group of Fq-rational points on the curve E
• point at infinityO: neutral element in E(Fq)

• scalar point multiplication: [k]P = P+ · · ·+ P︸ ︷︷ ︸
k times

• order-d point P: [d]P = O
• x(P): x-coordinate of a point P

Common notation

• p: prime number
• q: a power of p (either p or p2)
• Ja . . bK: integers in the interval [a, b]

• $←−: random selection from a given set

. A quick journey on what SI[DH/KE] is 3



Overview to the protocol: DH and ECDH

Public parameters:
Multiplicative group F∗

p, and
a primitive element g ∈ F∗

p

Alice

ska
$←− J2 . . p− 1K
pka ← gska

ssa ← pkska

b

Bob

skb
$←− J2 . . p− 1K

pkb ← gskb

ssb ← pkskb
a

pka

pkb

Figure: DH protocol assumes p is a prime number.
Notice, public keys are integers.

Public parameters:
E/Fp : y2 = x2 +Ax+B with #E(Fp) = hr

being r ≈ p a prime number, and an order-r point P ∈ E(Fp)

Alice

ska
$←− J2 . . rK

pka ← [ska]P

ssa ← [ska]pkb

Bob

skb
$←− J2 . . rK

pkb ← [skb]P

ssb ← [skb]pka

pka

pkb

Figure: ECDH protocol assumes p is a prime number.
Notice, public keys are points.

Remarks

1. Alice and Bob perform the same computations
2. Private keys are integers

. A quick journey on what SI[DH/KE] is 4



Overview to the protocol: DH and ECDH

Public parameters:
Multiplicative group F∗

p, and
a primitive element g ∈ F∗

p

Alice

ska
$←− J2 . . p− 1K
pka ← gska

ssa ← pkska

b

Bob

skb
$←− J2 . . p− 1K

pkb ← gskb

ssb ← pkskb
a

pka

pkb

Figure: DH protocol assumes p is a prime number.
Notice, public keys are integers.

Public parameters:
E/Fp : y2 = x2 +Ax+B with #E(Fp) = hr

being r ≈ p a prime number, and an order-r point P ∈ E(Fp)

Alice

ska
$←− J2 . . rK

pka ← [ska]P

ssa ← [ska]pkb

Bob

skb
$←− J2 . . rK

pkb ← [skb]P

ssb ← [skb]pka

pka

pkb

Figure: ECDH protocol assumes p is a prime number.
Notice, public keys are points.

Remarks

1. Alice and Bob perform the same computations
2. Private keys are integers

. A quick journey on what SI[DH/KE] is 4



Overview to the protocol: DH and ECDH

DH setup

1. G = F∗p , and public keys pk’s are integers;

2. keygen() performs modular exponentiations with
fixed primitive element g ∈ G;

3. derive() performs modular exponentiations with
variable element pk.

ECDH setup

1. G = E(Fp), and public keys pk’s are points;
2. keygen() performs scalar point multiplications

with fixed order-r point g ∈ G;
3. derive() performs scalar point multiplications

with variable order-r point pk.

Public parameters:
G, and g ∈ G

Alice

ska,pka ← keygen()

ssa ← derive(ska,pkb)

Bob

skb,pkb ← keygen()

ssb ← derive(skb,pka)

pka

pkb

Figure: DH protocol on G by using keygen and derive procedures.

. A quick journey on what SI[DH/KE] is 5



Overview to the protocol: SIDH

SIDH setup

1. Montgomery curves with #E(Fp2 ) = (p+ 1)2;

2. Alice’s public key involves Pb and Qb;
3. Bob’s public key involves Pa and Qa;
4. Alice and Bob perform different computations.

Our goals are

1. Sum up Kummer line arithmetic and isogenies;
2. Describe keygenA and keygenB blocks;
3. Describe deriveA and deriveB blocks;
4. Illustrate the hard problem on SI[DH/KE]

Public parameters:
E/Fp2 : y2 = x3 + 6x2 + x with p = 2e23e3 − 1,

x(Pa), x(Qa), x(Pa −Qa), x(Pb), x(Qb), and x(Pb −Qb)

Alice

ska,pka ← keygenA()

ssa ← deriveA(ska,pkb)

Bob

skb,pkb ← keygenB()

ssb ← deriveB(skb,pka)

pka

pkb

Figure: SIDH protocol. Alice’s and Bob’s secret computations involves {Pa,Qa} and {Pb,Qb}, respectively.

. A quick journey on what SI[DH/KE] is 6



Overview to the protocol: SIDH

SIDH setup

1. Montgomery curves with #E(Fp2 ) = (p+ 1)2;

2. Alice’s public key involves Pb and Qb;
3. Bob’s public key involves Pa and Qa;
4. Alice and Bob perform different computations.

Our goals are

1. Sum up Kummer line arithmetic and isogenies;
2. Describe keygenA and keygenB blocks;
3. Describe deriveA and deriveB blocks;
4. Illustrate the hard problem on SI[DH/KE]

Public parameters:
E/Fp2 : y2 = x3 + 6x2 + x with p = 2e23e3 − 1,

x(Pa), x(Qa), x(Pa −Qa), x(Pb), x(Qb), and x(Pb −Qb)

Alice

ska,pka ← keygenA()

ssa ← deriveA(ska,pkb)

Bob

skb,pkb ← keygenB()

ssb ← deriveB(skb,pka)

pka

pkb

Figure: SIDH protocol. Alice’s and Bob’s secret computations involves {Pa,Qa} and {Pb,Qb}, respectively.

. A quick journey on what SI[DH/KE] is 6



1 SIDH at glance

2 Kummer line arithmetic and isogenies

3 Describing SI[DH/KE] main blocks

4 Hard problem on SI[DH/KE]

. A quick journey on what SI[DH/KE] is 7



Kummer line: point arithmetic on E : y2 = x3 + Ax2 + x

• Only x-coordinates are required;

• Supersingular curves with #E(Fp2) = (p+ 1)2, and j-invariant j(E) = 256(A2−2)3

A2−4 ;

• Three-point ladder: x(P+ [k]Q).

x(P+ Q) =
(
x(P)x(Q)− 1

)2(
x(P)− x(Q)

)2x(P− Q)︸ ︷︷ ︸
Point addition

x([2]P) = (x(P)2 − 1)2

4x(P)(x(P)2 + Ax(P) + 1)︸ ︷︷ ︸
Point doubling

x([3]P) =
(
x(P)4 − 4Ax(P)− 6x(P)2 − 3

)2x(P)(
4Ax(P)3 + 3x(P)4 + 6x(P)2 − 1

)2︸ ︷︷ ︸
Point tripling

. A quick journey on what SI[DH/KE] is 8



Kummer line: isogenies (codomain curves)

What is a d-isogeny φ : E → E′?
• A rational map between two curves with

finite kernel;
• A group homomorphism with #ker φ = d;

Remarks
• ker φ = 〈P〉 for some order-d point P, that is,
φ([k]P) = O;
• φ(S+ T) = φ(S) + φ(T);
• φ preserves curve size: #E(Fp2) = #E′(Fp2).

empty line
A′ = 2

(
1− 2x(P2)

2)︸ ︷︷ ︸
2-isogeny

A′ =
(
Ax(P3)− 6x(P3)

2 + 6
)
x(P3)︸ ︷︷ ︸

3-isogeny

A′ = 4x(P4)
2 − 2︸ ︷︷ ︸

4-isogeny

Why (0,0) cannot live in ker φ?

. A quick journey on what SI[DH/KE] is 9



Kummer line: isogenies (codomain curves)

What is a d-isogeny φ : E → E′?
• A rational map between two curves with

finite kernel;
• A group homomorphism with #ker φ = d;

Remarks
• ker φ = 〈P〉 for some order-d point P, that is,
φ([k]P) = O;
• φ(S+ T) = φ(S) + φ(T);
• φ preserves curve size: #E(Fp2) = #E′(Fp2).

empty line
A′ = 2

(
1− 2x(P2)

2)︸ ︷︷ ︸
2-isogeny

A′ =
(
Ax(P3)− 6x(P3)

2 + 6
)
x(P3)︸ ︷︷ ︸

3-isogeny

A′ = 4x(P4)
2 − 2︸ ︷︷ ︸

4-isogeny

Why (0,0) cannot live in ker φ?

. A quick journey on what SI[DH/KE] is 9



Kummer line: isogenies (codomain curves)

What is a d-isogeny φ : E → E′?
• A rational map between two curves with

finite kernel;
• A group homomorphism with #ker φ = d;

Remarks
• ker φ = 〈P〉 for some order-d point P, that is,
φ([k]P) = O;
• φ(S+ T) = φ(S) + φ(T);
• φ preserves curve size: #E(Fp2) = #E′(Fp2).

empty line
A′ = 2

(
1− 2x(P2)

2)︸ ︷︷ ︸
2-isogeny

A′ =
(
Ax(P3)− 6x(P3)

2 + 6
)
x(P3)︸ ︷︷ ︸

3-isogeny

A′ = 4x(P4)
2 − 2︸ ︷︷ ︸

4-isogeny

Why (0,0) cannot live in ker φ? It gives A = 2, and then j(E′) is undetermined (there is a division by zero)

. A quick journey on what SI[DH/KE] is 9



Kummer line: pushing points through isogenies

• SI[DH/KE] performs large 2e2 -isogenies and 3e3 -isogenies;
• So we need an efficient way to map points to codomain curves;

x(φ(Q)) = x(Q)2x(P2)− x(Q)
x(Q)− x(P2)︸ ︷︷ ︸

2-isogeny

x(φ(Q)) =
x(Q)

(
x(Q)x(P3)− 1

)2(
x(Q)− x(P3)

)2︸ ︷︷ ︸
3-isogeny

x(φ(Q)) =
−
(
x(Q)x(P4)

2 + x(Q)− 2x(P4)
)
x(Q)

(
x(Q)x(P4)− 1

)2(
x(Q)− x(P4)

)2(2x(Q)x(P4)− x(P4)2 − 1
)︸ ︷︷ ︸

4-isogeny

. A quick journey on what SI[DH/KE] is 10



Kummer line: isogenies chain (example)

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

2-isogeny evaluations

m
u
ltip

lication
s
b
y
2

Figure: Strategy evaluation for isogenies chains

Computing a 210-isogeny by using an order-210

point P:
1. Split the task into 10 2-isogenies;
2. Compute K1 = [29]P, and the 2-isogeny
φ1 : E → E1 with kernel 〈K1〉;

3. Get P1 = φ1(P) . Which is the order of φ1(P) ?
4. Compute K2 = [28]P1, and the 2-isogeny
φ1 : E1 → E2 with kernel 〈K2〉 ;

5. The i-th 2-isogeny has kernel generator
Ki = φ1 ◦ · · · ◦ φi−1([210−i]P) .

6. Different strategies!
7. Which is the running time of this strategy?
8. Dynamic programming gives O(e2 log2(e2))

. A quick journey on what SI[DH/KE] is 11



Kummer line: isogenies chain (example)

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

2-isogeny evaluations

m
u
ltip

lication
s
b
y
2

Figure: Strategy evaluation for isogenies chains

Computing a 210-isogeny by using an order-210

point P:
1. Split the task into 10 2-isogenies;
2. Compute K1 = [29]P, and the 2-isogeny
φ1 : E → E1 with kernel 〈K1〉;

3. Get P1 = φ1(P) . Which is the order of φ1(P) ?
4. Compute K2 = [28]P1, and the 2-isogeny
φ1 : E1 → E2 with kernel 〈K2〉 ;

5. The i-th 2-isogeny has kernel generator
Ki = φ1 ◦ · · · ◦ φi−1([210−i]P) .

6. Different strategies!
7. Which is the running time of this strategy?
8. Dynamic programming gives O(e2 log2(e2))

. A quick journey on what SI[DH/KE] is 11



Kummer line: isogenies chain (example)

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

2-isogeny evaluations

m
u
ltip

lication
s
b
y
2

Figure: Strategy evaluation for isogenies chains

Computing a 210-isogeny by using an order-210

point P:
1. Split the task into 10 2-isogenies;
2. Compute K1 = [29]P, and the 2-isogeny
φ1 : E → E1 with kernel 〈K1〉;

3. Get P1 = φ1(P) . Which is the order of φ1(P) ?
4. Compute K2 = [28]P1, and the 2-isogeny
φ1 : E1 → E2 with kernel 〈K2〉 ;

5. The i-th 2-isogeny has kernel generator
Ki = φ1 ◦ · · · ◦ φi−1([210−i]P) .

6. Different strategies!
7. Which is the running time of this strategy?
8. Dynamic programming gives O(e2 log2(e2))

. A quick journey on what SI[DH/KE] is 11



Kummer line: isogenies chain (example)

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

2-isogeny evaluations

m
u
ltip

lication
s
b
y
2

Figure: Strategy evaluation for isogenies chains

Computing a 210-isogeny by using an order-210

point P:
1. Split the task into 10 2-isogenies;
2. Compute K1 = [29]P, and the 2-isogeny
φ1 : E → E1 with kernel 〈K1〉;

3. Get P1 = φ1(P) . Which is the order of φ1(P) ?
4. Compute K2 = [28]P1, and the 2-isogeny
φ1 : E1 → E2 with kernel 〈K2〉 ;

5. The i-th 2-isogeny has kernel generator
Ki = φ1 ◦ · · · ◦ φi−1([210−i]P) .

6. Different strategies!
7. Which is the running time of this strategy?
8. Dynamic programming gives O(e2 log2(e2))

. A quick journey on what SI[DH/KE] is 11



Kummer line: isogenies chain (example)

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

2-isogeny evaluations

m
u
ltip

lication
s
b
y
2

Figure: Strategy evaluation for isogenies chains

Computing a 210-isogeny by using an order-210

point P:
1. Split the task into 10 2-isogenies;
2. Compute K1 = [29]P, and the 2-isogeny
φ1 : E → E1 with kernel 〈K1〉;

3. Get P1 = φ1(P) . Which is the order of φ1(P) ?
4. Compute K2 = [28]P1, and the 2-isogeny
φ1 : E1 → E2 with kernel 〈K2〉 ;

5. The i-th 2-isogeny has kernel generator
Ki = φ1 ◦ · · · ◦ φi−1([210−i]P) .

6. Different strategies!
7. Which is the running time of this strategy?
8. Dynamic programming gives O(e2 log2(e2))

. A quick journey on what SI[DH/KE] is 11



Kummer line: isogenies chain (example)

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

2-isogeny evaluations

m
u
ltip

lication
s
b
y
2

Figure: Strategy evaluation for isogenies chains

Computing a 210-isogeny by using an order-210

point P:
1. Split the task into 10 2-isogenies;
2. Compute K1 = [29]P, and the 2-isogeny
φ1 : E → E1 with kernel 〈K1〉;

3. Get P1 = φ1(P) . Which is the order of φ1(P) ?
4. Compute K2 = [28]P1, and the 2-isogeny
φ1 : E1 → E2 with kernel 〈K2〉 ;

5. The i-th 2-isogeny has kernel generator
Ki = φ1 ◦ · · · ◦ φi−1([210−i]P) .

6. Different strategies!
7. Which is the running time of this strategy?
8. Dynamic programming gives O(e2 log2(e2))

. A quick journey on what SI[DH/KE] is 11



Kummer line: isogenies chain (example)

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

2-isogeny evaluations

m
u
ltip

lication
s
b
y
2

Figure: Strategy evaluation for isogenies chains

Computing a 210-isogeny by using an order-210

point P:
1. Split the task into 10 2-isogenies;
2. Compute K1 = [29]P, and the 2-isogeny
φ1 : E → E1 with kernel 〈K1〉;

3. Get P1 = φ1(P) . Which is the order of φ1(P) ?
4. Compute K2 = [28]P1, and the 2-isogeny
φ1 : E1 → E2 with kernel 〈K2〉 ;

5. The i-th 2-isogeny has kernel generator
Ki = φ1 ◦ · · · ◦ φi−1([210−i]P) .

6. Different strategies! Any idea to find an
optimal one?

7. Which is the running time of this strategy?
Quadratic complexity!

8. Dynamic programming gives O(e2 log2(e2))

. A quick journey on what SI[DH/KE] is 11



Kummer line: isogenies chain (example)

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

2-isogeny evaluations

m
u
ltip

lication
s
b
y
2

Figure: Strategy evaluation for isogenies chains

Computing a 2e2 -isogeny by using an order-2e2

point P:
1. Split the task into e2 2-isogenies;
2. Compute K1 = [29]P, and the 2-isogeny
φ1 : E → E1 with kernel 〈K1〉;

3. Get P1 = φ1(P) . Which is the order of φ1(P) ?
4. Compute K2 = [28]P1, and the 2-isogeny
φ1 : E1 → E2 with kernel 〈K2〉 ;

5. The i-th 2-isogeny has kernel generator
Ki = φ1 ◦ · · · ◦ φi−1([210−i]P) .

6. Different strategies! Any idea to find an
optimal one?

7. Which is the running time of this strategy?
Quadratic complexity!

8. Dynamic programming gives O(e2 log2(e2))

. A quick journey on what SI[DH/KE] is 11



1 SIDH at glance

2 Kummer line arithmetic and isogenies

3 Describing SI[DH/KE] main blocks

4 Hard problem on SI[DH/KE]

. A quick journey on what SI[DH/KE] is 12



SIDH main block: keygen

1. Staring curve E : y2 = x3 + 6x2 + x;
2. Pushing public order-3e3 ; points through a secret 2e2 -isogeny.

2e2-isogeny
evaluation

Random mod 2e2

Three point ladder
x(Pa)
x(Qa)
x(Da)

x(Pb)
x(Qb)
x(Db)

ska

x(Ra) = x
(
Pa + [ska]Qa

)

Secret Key Generation

keygenA

x(φa(Pb))
x(φa(Qb))
x(φa(Db))

ska

Figure: Public key generation.

. A quick journey on what SI[DH/KE] is 13



SIDH main block: keygen

1. Staring curve E : y2 = x3 + 6x2 + x;
2. Pushing public order-2e2 ; points through a secret 3e3 -isogeny.

3e3-isogeny
evaluation

Random mod 3e3

Three point ladder
x(Pb)
x(Qb)
x(Db)

x(Pa)
x(Qa)
x(Da)

skb

x(Rb) = x
(
Pb + [skb]Qb

)

Secret Key Generation

keygenB

x(φb(Pa))
x(φb(Qa))
x(φb(Da))

skb

Figure: Public key generation.

. A quick journey on what SI[DH/KE] is 13



SIDH main block: derive

1. Secret 2e2 -isogeny;
2. No extra points required;
3. E/〈R〉 denotes the codomain curve of the isogeny with kernel 〈R〉.

2e2-isogeny
construction

Get A-coefficient
x(φb(Pa))
x(φb(Qa))
x(φb(Da))

Three point ladderska

A

x(φb(Ra)) = x
(
φb(Pa) + [ska]φb(Qa)

)

Kernel Generation

deriveA

j
(
Eb/〈φb(Ra)〉

)

Figure: Shared secret derivation

. A quick journey on what SI[DH/KE] is 14



SIDH main block: derive

1. Secret 3e3 -isogeny;
2. No extra points required;
3. E/〈R〉 denotes the codomain curve of the isogeny with kernel 〈R〉.

3e3-isogeny
construction

Get A-coefficient
x(φa(Pb))
x(φa(Qb))
x(φa(Db))

Three point ladderskb

A

x(φa(Rb)) = x
(
φa(Pb) + [skb]φa(Qb)

)

Kernel Generation

deriveB

j
(
Ea/〈φa(Rb)〉

)

Figure: Shared secret derivation

. A quick journey on what SI[DH/KE] is 14



SIDH protocol: diagram

E Ea

Eb E′

φb

φa

ψb

ψa

Figure: SIDH diagram.

• Alice gets the codomain curve of φb ◦ ψa;
• Bob obtains the codomain curve of φa ◦ ψb;
• What are the kernels of φb ◦ψa and φa ◦ψb?

〈Ra,Rb〉
• Different isogeny composition ordering that gives

isomorphic curves!

. A quick journey on what SI[DH/KE] is 15



SIDH protocol: diagram

E Ea

Eb E′

φb

φa

ψb

ψa

Figure: SIDH diagram.

• Alice gets the codomain curve of φb ◦ ψa;
• Bob obtains the codomain curve of φa ◦ ψb;
• What are the kernels of φb ◦ψa and φa ◦ψb?

〈Ra,Rb〉
• Different isogeny composition ordering that gives

isomorphic curves!

. A quick journey on what SI[DH/KE] is 15



SIDH protocol: diagram

E Ea

Eb E′

φb

φa

ψb

ψa

Figure: SIDH diagram.

• Alice gets the codomain curve of φb ◦ ψa;
• Bob obtains the codomain curve of φa ◦ ψb;
• What are the kernels of φb ◦ψa and φa ◦ψb?

〈Ra,Rb〉
• Different isogeny composition ordering that gives

isomorphic curves!

. A quick journey on what SI[DH/KE] is 15



SIDH protocol: diagram

E Ea

Eb E′

φb

φa

ψb

ψa

Figure: SIDH diagram.

• Alice gets the codomain curve of φb ◦ ψa;
• Bob obtains the codomain curve of φa ◦ ψb;
• What are the kernels of φb ◦ψa and φa ◦ψb? 〈Ra,Rb〉
• Different isogeny composition ordering that gives

isomorphic curves!

. A quick journey on what SI[DH/KE] is 15



Recap to the protocol: SIDH

Public parameters:
E/Fp2 : y2 = x3 + 6x2 + x with p = 2e23e3 − 1,

x(Pa), x(Qa), x(Pa −Qa), x(Pb), x(Qb), and x(Pb −Qb)

Alice

ska,pka ← keygenA()

ssa ← deriveA(ska,pkb)

Bob

skb,pkb ← keygenB()

ssb ← deriveB(skb,pka)

pka

pkb

Figure: SIDH protocol.

. A quick journey on what SI[DH/KE] is 16



Overview to the protocol: SIKE

Public parameter:
E/Fp2 : y2 = x3 + 6x2 + x with p = 2e23e3 − 1,

x(Pa), x(Qa), x(Pa −Qa), x(Pb), x(Qb), and x(Pb −Qb)

KeyGen

sk3,pk3 ← keygenB()

s
$←− {0, 1}n

Encaps

m
$←− {0, 1}n

sk2 = SHAKE256(m||pk3, e2)
c0 ← keygen∗A(sk2)

j ← deriveA(sk2,pk3)

c1 = SHAKE256(j, n)⊕m

K = SHAKE256(m||c0||c1, k)

Decaps

j′ ← deriveB(sk3,pk2)

m′ = SHAKE256(j′, n)⊕ c1

sk′2 = SHAKE256(m′||pk3, e2)
c′0 ← keygen∗A(sk

′
2)

if c0 = c′0 then

K = SHAKE256(m′||c0||c1, k)
else

K = SHAKE256(s||c0||c1, k)

c0, c1

Figure: SIKE protocol. The keygen∗A () procedure is keygenA() but taking as input ska instead of computing it.

. A quick journey on what SI[DH/KE] is 17



Overview to the protocol: SIKE

Public parameter:
E/Fp2 : y2 = x3 + 6x2 + x with p = 2e23e3 − 1,

x(Pa), x(Qa), x(Pa −Qa), x(Pb), x(Qb), and x(Pb −Qb)

KeyGen

sk3,pk3 ← keygenB()

s
$←− {0, 1}n

Encaps

m
$←− {0, 1}n

sk2 = SHAKE256(m||pk3, e2)
c0 ← keygen∗A(sk2)

j ← deriveA(sk2,pk3)

c1 = SHAKE256(j, n)⊕m

K = SHAKE256(m||c0||c1, k)

Decaps

j′ ← deriveB(sk3,pk2)

m′ = SHAKE256(j′, n)⊕ c1

sk′2 = SHAKE256(m′||pk3, e2)
c′0 ← keygen∗A(sk

′
2)

if c0 = c′0 then

K = SHAKE256(m′||c0||c1, k)
else

K = SHAKE256(s||c0||c1, k)

c0, c1

Figure: SIKE protocol. The keygen∗A () procedure is keygenA() but taking as input ska instead of computing it.

. A quick journey on what SI[DH/KE] is 17



Overview to the protocol: SIKE

Public parameter:
E/Fp2 : y2 = x3 + 6x2 + x with p = 2e23e3 − 1,

x(Pa), x(Qa), x(Pa −Qa), x(Pb), x(Qb), and x(Pb −Qb)

KeyGen

sk3,pk3 ← keygenB()

s
$←− {0, 1}n

Encaps

m
$←− {0, 1}n

sk2 = SHAKE256(m||pk3, e2)
c0 ← keygen∗A(sk2)

j ← deriveA(sk2,pk3)

c1 = SHAKE256(j, n)⊕m

K = SHAKE256(m||c0||c1, k)

Decaps

j′ ← deriveB(sk3,pk2)

m′ = SHAKE256(j′, n)⊕ c1

sk′2 = SHAKE256(m′||pk3, e2)
c′0 ← keygen∗A(sk

′
2)

if c0 = c′0 then

K = SHAKE256(m′||c0||c1, k)
else

K = SHAKE256(s||c0||c1, k)

c0, c1

Figure: SIKE protocol. The keygen∗A () procedure is keygenA() but taking as input ska instead of computing it.

. A quick journey on what SI[DH/KE] is 17



1 SIDH at glance

2 Kummer line arithmetic and isogenies

3 Describing SI[DH/KE] main blocks

4 Hard problem on SI[DH/KE]

. A quick journey on what SI[DH/KE] is 18



SI[DH/KE] key space (remarks)

1. What are the private keys?
2. What are the public keys?
3. What is the shared secret?
4. There are ways to reduce the public-key sizes (not presented in this talk)
5. Let’s see a demo using the sibc python-library
6. Hard problem

• Alice side: Given E and E/〈Pa + [ska]Qa〉, to find the 2e2 -isogeny with kernel 〈Pa + [ska]Qa〉
• Bob side: Given E and E/〈Pb + [skb]Qb〉, to find the 3e3 -isogeny with kernel 〈Pb + [skb]Qb〉

. A quick journey on what SI[DH/KE] is 19

https://github.com/JJChiDguez/sibc


SI[DH/KE] key space (remarks)

1. What are the private keys? integers of log2(p)
2 bits

2. What are the public keys?
3. What is the shared secret?
4. There are ways to reduce the public-key sizes (not presented in this talk)
5. Let’s see a demo using the sibc python-library
6. Hard problem

• Alice side: Given E and E/〈Pa + [ska]Qa〉, to find the 2e2 -isogeny with kernel 〈Pa + [ska]Qa〉
• Bob side: Given E and E/〈Pb + [skb]Qb〉, to find the 3e3 -isogeny with kernel 〈Pb + [skb]Qb〉

. A quick journey on what SI[DH/KE] is 19

https://github.com/JJChiDguez/sibc


SI[DH/KE] key space (remarks)

1. What are the private keys? integers of log2(p)
2 bits

2. What are the public keys?
3. What is the shared secret?
4. There are ways to reduce the public-key sizes (not presented in this talk)
5. Let’s see a demo using the sibc python-library
6. Hard problem

• Alice side: Given E and E/〈Pa + [ska]Qa〉, to find the 2e2 -isogeny with kernel 〈Pa + [ska]Qa〉
• Bob side: Given E and E/〈Pb + [skb]Qb〉, to find the 3e3 -isogeny with kernel 〈Pb + [skb]Qb〉

. A quick journey on what SI[DH/KE] is 19

https://github.com/JJChiDguez/sibc


SI[DH/KE] key space (remarks)

1. What are the private keys? integers of log2(p)
2 bits

2. What are the public keys? three x-coordinates of 2 log2(p) bits: total of 6 log2(p)
3. What is the shared secret?
4. There are ways to reduce the public-key sizes (not presented in this talk)
5. Let’s see a demo using the sibc python-library
6. Hard problem

• Alice side: Given E and E/〈Pa + [ska]Qa〉, to find the 2e2 -isogeny with kernel 〈Pa + [ska]Qa〉
• Bob side: Given E and E/〈Pb + [skb]Qb〉, to find the 3e3 -isogeny with kernel 〈Pb + [skb]Qb〉

. A quick journey on what SI[DH/KE] is 19

https://github.com/JJChiDguez/sibc


SI[DH/KE] key space (remarks)

1. What are the private keys? integers of log2(p)
2 bits

2. What are the public keys? three x-coordinates of 2 log2(p) bits: total of 6 log2(p)
3. What is the shared secret?
4. There are ways to reduce the public-key sizes (not presented in this talk)
5. Let’s see a demo using the sibc python-library
6. Hard problem

• Alice side: Given E and E/〈Pa + [ska]Qa〉, to find the 2e2 -isogeny with kernel 〈Pa + [ska]Qa〉
• Bob side: Given E and E/〈Pb + [skb]Qb〉, to find the 3e3 -isogeny with kernel 〈Pb + [skb]Qb〉

. A quick journey on what SI[DH/KE] is 19

https://github.com/JJChiDguez/sibc


SI[DH/KE] key space (remarks)

1. What are the private keys? integers of log2(p)
2 bits

2. What are the public keys? three x-coordinates of 2 log2(p) bits: total of 6 log2(p)
3. What is the shared secret? an Fp2 -element of 2 log2(p) bits
4. There are ways to reduce the public-key sizes (not presented in this talk)
5. Let’s see a demo using the sibc python-library
6. Hard problem

• Alice side: Given E and E/〈Pa + [ska]Qa〉, to find the 2e2 -isogeny with kernel 〈Pa + [ska]Qa〉
• Bob side: Given E and E/〈Pb + [skb]Qb〉, to find the 3e3 -isogeny with kernel 〈Pb + [skb]Qb〉

. A quick journey on what SI[DH/KE] is 19

https://github.com/JJChiDguez/sibc


SI[DH/KE] key space (remarks)

1. What are the private keys? integers of log2(p)
2 bits

2. What are the public keys? three x-coordinates of 2 log2(p) bits: total of 6 log2(p)
3. What is the shared secret? an Fp2 -element of 2 log2(p) bits
4. There are ways to reduce the public-key sizes (not presented in this talk)
5. Let’s see a demo using the sibc python-library
6. Hard problem

• Alice side: Given E and E/〈Pa + [ska]Qa〉, to find the 2e2 -isogeny with kernel 〈Pa + [ska]Qa〉
• Bob side: Given E and E/〈Pb + [skb]Qb〉, to find the 3e3 -isogeny with kernel 〈Pb + [skb]Qb〉

. A quick journey on what SI[DH/KE] is 19

https://github.com/JJChiDguez/sibc


SI[DH/KE] key space (remarks)

1. What are the private keys? integers of log2(p)
2 bits

2. What are the public keys? three x-coordinates of 2 log2(p) bits: total of 6 log2(p)
3. What is the shared secret? an Fp2 -element of 2 log2(p) bits
4. There are ways to reduce the public-key sizes (not presented in this talk)
5. Let’s see a demo using the sibc python-library
6. Hard problem

• Alice side: Given E and E/〈Pa + [ska]Qa〉, to find the 2e2 -isogeny with kernel 〈Pa + [ska]Qa〉
• Bob side: Given E and E/〈Pb + [skb]Qb〉, to find the 3e3 -isogeny with kernel 〈Pb + [skb]Qb〉

. A quick journey on what SI[DH/KE] is 19

https://github.com/JJChiDguez/sibc


SI[DH/KE] key space (remarks)

1. What are the private keys? integers of log2(p)
2 bits

2. What are the public keys? three x-coordinates of 2 log2(p) bits: total of 6 log2(p)
3. What is the shared secret? an Fp2 -element of 2 log2(p) bits
4. There are ways to reduce the public-key sizes (not presented in this talk)
5. Let’s see a demo using the sibc python-library
6. Hard problem

• Alice side: Given E and E/〈Pa + [ska]Qa〉, to find the 2e2 -isogeny with kernel 〈Pa + [ska]Qa〉
• Bob side: Given E and E/〈Pb + [skb]Qb〉, to find the 3e3 -isogeny with kernel 〈Pb + [skb]Qb〉

. A quick journey on what SI[DH/KE] is 19

https://github.com/JJChiDguez/sibc


SI[DH/KE] key space Alice side (2e2-isogenous curves)

E

2e2 different choices: secret 2-isogeny path, public supersingular curve EA = E/〈Pa + [ska]Qa〉

e2 levels

Figure: 2e2 -isogeny tree with root E/Fp2 : y
2 = x3 + Ax2 + x having E[2e2 ] = 〈Pa,Qa〉. Edges describe 2-isogenies.

. A quick journey on what SI[DH/KE] is 20



SI[DH/KE] key space Bob side (3e3-isogenous curves)

E

3e3 different choices: secret 3-isogeny path, public supersingular curve EB = E/〈Pb + [skb]Qb〉

e3 levels

Figure: 3e3 -isogeny tree with root E/Fp2 : y
2 = x3 + Ax2 + x having E[3e3 ] = 〈Pb,Qb〉. Edges describe 3-isogenies.

. A quick journey on what SI[DH/KE] is 20



SI[DH/KE] key space Alice side (MITM-based attack)

E

e2
2 levels

EA

e2
2 levels

. A quick journey on what SI[DH/KE] is 21



SI[DH/KE] key space Bob side (MITM-based attack)

E

e3
2 levels

EB

e3
2 levels

. A quick journey on what SI[DH/KE] is 21



SI[DH/KE] key space Last remarks

1. How much memory does MITM require?

2
e2
2 ≈ p1/4 cells of memory

2. What is the MITM running time?

1.5× 2
e2
2 ≈ 1.5× p1/4 (in average)

3. Can you implement MITM using the sibc python-library?

. A quick journey on what SI[DH/KE] is 22

https://github.com/JJChiDguez/sibc


SI[DH/KE] key space Last remarks

1. How much memory does MITM require? 2
e2
2 ≈ p1/4 cells of memory

2. What is the MITM running time?

1.5× 2
e2
2 ≈ 1.5× p1/4 (in average)

3. Can you implement MITM using the sibc python-library?

. A quick journey on what SI[DH/KE] is 22

https://github.com/JJChiDguez/sibc


SI[DH/KE] key space Last remarks

1. How much memory does MITM require? 2
e2
2 ≈ p1/4 cells of memory

2. What is the MITM running time?

1.5× 2
e2
2 ≈ 1.5× p1/4 (in average)

3. Can you implement MITM using the sibc python-library?

. A quick journey on what SI[DH/KE] is 22

https://github.com/JJChiDguez/sibc


SI[DH/KE] key space Last remarks

1. How much memory does MITM require? 2
e2
2 ≈ p1/4 cells of memory

2. What is the MITM running time? 1.5× 2
e2
2 ≈ 1.5× p1/4 (in average)

3. Can you implement MITM using the sibc python-library?

. A quick journey on what SI[DH/KE] is 22

https://github.com/JJChiDguez/sibc


SI[DH/KE] key space Last remarks

1. How much memory does MITM require? 2
e2
2 ≈ p1/4 cells of memory

2. What is the MITM running time? 1.5× 2
e2
2 ≈ 1.5× p1/4 (in average)

3. Can you implement MITM using the sibc python-library?

. A quick journey on what SI[DH/KE] is 22

https://github.com/JJChiDguez/sibc


Any questions?

Thanks for attending!

For further questions, contact me by email: jesus.dominguez@tii.ae

. A quick journey on what SI[DH/KE] is 23



References I

[1] Craig Costello and Benjamin Smith.
Montgomery curves and their arithmetic - the case of large characteristic fields.
J. Cryptogr. Eng., 8(3):227–240, 2018.

[2] Gora Adj, Jesús-Javier Chi-Domínguez, and Francisco Rodríguez-Henríquez.
SIBC python library.
https://github.com/JJChiDguez/sibc/, 2021.

[3] Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, Aaron
Hutchinson, Amir Jalali, David Jao, Koray Karabina, Brian Koziel, Brian LaMacchia, Patrick Longa,
Michael Naehrig, Geovandro Pereira, Joost Renes, Vladimir Soukharev, and David Urbanik.
SIDH v3.4 (C Edition).
https://github.com/microsoft/PQCrypto-SIDH, 2021.
Online; accessed 9 June 2021.

[4] Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, Aaron
Hutchinson, Amir Jalali, David Jao, Koray Karabina, Brian Koziel, Brian LaMacchia, Patrick Longa,
Michael Naehrig, Geovandro Pereira, Joost Renes, Vladimir Soukharev, and David Urbanik.
Supersingular Isogeny Key Encapsulation.
https://sike.org/files/SIDH-spec.pdf, 2021.
Online; accessed 9 June 2021.

. A quick journey on what SI[DH/KE] is 24

https://github.com/JJChiDguez/sibc/
https://github.com/microsoft/PQCrypto-SIDH
https://sike.org/files/SIDH-spec.pdf

	SIDH at glance
	Kummer line arithmetic and isogenies
	Describing SI[DH/KE] main blocks
	Hard problem on SI[DH/KE]

