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Framework: Notation

Finite Fields

• Fq: finite field with q elements
• F∗q : multiplicative group (invertible elements)

• exponentiation: gk = g× · · · × g︸ ︷︷ ︸
k times

Elliptic curves

• E(Fq): group of Fq-rational points on the curve E
• point at infinityO: neutral element in E(Fq)

• scalar point multiplication: [k]P = P+ · · ·+ P︸ ︷︷ ︸
k times

• order-d point P: [d]P = O
• x(P): x-coordinate of a point P

Common notation

• p: prime number
• q: a power of p (either p or p2)
• Ja . . bK: integers in the interval [a, b]

• $←−: random selection from a given set
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Overview to the protocol: DH and ECDH

Public parameters:
Multiplicative group F∗

p, and
a primitive element g ∈ F∗

p

Alice

ska
$←− J2 . . p− 1K
pka ← gska

ssa ← pkska

b

Bob

skb
$←− J2 . . p− 1K

pkb ← gskb

ssb ← pkskb
a

pka

pkb

Figure: DH protocol assumes p is a prime number.
Notice, public keys are integers.

Public parameters:
E/Fp : y2 = x2 +Ax+B with #E(Fp) = hr

being r ≈ p a prime number, and an order-r point P ∈ E(Fp)

Alice

ska
$←− J2 . . rK

pka ← [ska]P

ssa ← [ska]pkb

Bob

skb
$←− J2 . . rK

pkb ← [skb]P

ssb ← [skb]pka

pka

pkb

Figure: ECDH protocol assumes p is a prime number.
Notice, public keys are points.

Remarks

1. Alice and Bob perform the same computations
2. Private keys are integers
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Overview to the protocol: DH and ECDH

DH setup

1. G = F∗p , and public keys pk’s are integers;

2. keygen() performs modular exponentiations with
fixed primitive element g ∈ G;

3. derive() performs modular exponentiations with
variable element pk.

ECDH setup

1. G = E(Fp), and public keys pk’s are points;
2. keygen() performs scalar point multiplications

with fixed order-r point g ∈ G;
3. derive() performs scalar point multiplications

with variable order-r point pk.

Public parameters:
G, and g ∈ G

Alice

ska,pka ← keygen()

ssa ← derive(ska,pkb)

Bob

skb,pkb ← keygen()

ssb ← derive(skb,pka)

pka

pkb

Figure: DH protocol on G by using keygen and derive procedures.
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Overview to the protocol: SIDH

SIDH setup

1. Montgomery curves with #E(Fp2 ) = (p+ 1)2;

2. Alice’s public key involves Pb and Qb;
3. Bob’s public key involves Pa and Qa;
4. Alice and Bob perform different computations.

Our goals are

1. Sum up Kummer line arithmetic and isogenies;
2. Describe keygenA and keygenB blocks;
3. Describe deriveA and deriveB blocks;
4. Illustrate the hard problem on SI[DH/KE]

Public parameters:
E/Fp2 : y2 = x3 + 6x2 + x with p = 2e23e3 − 1,

x(Pa), x(Qa), x(Pa −Qa), x(Pb), x(Qb), and x(Pb −Qb)

Alice

ska,pka ← keygenA()

ssa ← deriveA(ska,pkb)

Bob

skb,pkb ← keygenB()

ssb ← deriveB(skb,pka)

pka

pkb

Figure: SIDH protocol. Alice’s and Bob’s secret computations involves {Pa,Qa} and {Pb,Qb}, respectively.
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Kummer line: point arithmetic on E : y2 = x3 + Ax2 + x

• Only x-coordinates are required;

• Supersingular curves with #E(Fp2) = (p+ 1)2, and j-invariant j(E) = 256(A2−2)3

A2−4 ;

• Three-point ladder: x(P+ [k]Q).

x(P+ Q) =
(
x(P)x(Q)− 1

)2(
x(P)− x(Q)

)2x(P− Q)︸ ︷︷ ︸
Point addition

x([2]P) = (x(P)2 − 1)2

4x(P)(x(P)2 + Ax(P) + 1)︸ ︷︷ ︸
Point doubling

x([3]P) =
(
x(P)4 − 4Ax(P)− 6x(P)2 − 3

)2x(P)(
4Ax(P)3 + 3x(P)4 + 6x(P)2 − 1

)2︸ ︷︷ ︸
Point tripling

. A quick journey on what SI[DH/KE] is 8



Kummer line: isogenies (codomain curves)

What is a d-isogeny φ : E → E′?
• A rational map between two curves with

finite kernel;
• A group homomorphism with #ker φ = d;

Remarks
• ker φ = 〈P〉 for some order-d point P, that is,
φ([k]P) = O;
• φ(S+ T) = φ(S) + φ(T);
• φ preserves curve size: #E(Fp2) = #E′(Fp2).

empty line
A′ = 2

(
1− 2x(P2)

2)︸ ︷︷ ︸
2-isogeny

A′ =
(
Ax(P3)− 6x(P3)

2 + 6
)
x(P3)︸ ︷︷ ︸

3-isogeny

A′ = 4x(P4)
2 − 2︸ ︷︷ ︸

4-isogeny

Why (0,0) cannot live in ker φ?
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Kummer line: pushing points through isogenies

• SI[DH/KE] performs large 2e2 -isogenies and 3e3 -isogenies;
• So we need an efficient way to map points to codomain curves;

x(φ(Q)) = x(Q)2x(P2)− x(Q)
x(Q)− x(P2)︸ ︷︷ ︸

2-isogeny

x(φ(Q)) =
x(Q)

(
x(Q)x(P3)− 1

)2(
x(Q)− x(P3)

)2︸ ︷︷ ︸
3-isogeny

x(φ(Q)) =
−
(
x(Q)x(P4)

2 + x(Q)− 2x(P4)
)
x(Q)

(
x(Q)x(P4)− 1

)2(
x(Q)− x(P4)

)2(2x(Q)x(P4)− x(P4)2 − 1
)︸ ︷︷ ︸

4-isogeny
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Kummer line: isogenies chain (example)

0 1 2 3 4 5 6 7 8 9
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Figure: Strategy evaluation for isogenies chains

Computing a 210-isogeny by using an order-210

point P:
1. Split the task into 10 2-isogenies;
2. Compute K1 = [29]P, and the 2-isogeny
φ1 : E → E1 with kernel 〈K1〉;

3. Get P1 = φ1(P) . Which is the order of φ1(P) ?
4. Compute K2 = [28]P1, and the 2-isogeny
φ1 : E1 → E2 with kernel 〈K2〉 ;

5. The i-th 2-isogeny has kernel generator
Ki = φ1 ◦ · · · ◦ φi−1([210−i]P) .

6. Different strategies!
7. Which is the running time of this strategy?
8. Dynamic programming gives O(e2 log2(e2))
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Computing a 210-isogeny by using an order-210

point P:
1. Split the task into 10 2-isogenies;
2. Compute K1 = [29]P, and the 2-isogeny
φ1 : E → E1 with kernel 〈K1〉;
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5. The i-th 2-isogeny has kernel generator
Ki = φ1 ◦ · · · ◦ φi−1([210−i]P) .

6. Different strategies! Any idea to find an
optimal one?

7. Which is the running time of this strategy?
Quadratic complexity!

8. Dynamic programming gives O(e2 log2(e2))
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Computing a 2e2 -isogeny by using an order-2e2
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SIDH main block: keygen

1. Staring curve E : y2 = x3 + 6x2 + x;
2. Pushing public order-3e3 ; points through a secret 2e2 -isogeny.

2e2-isogeny
evaluation

Random mod 2e2

Three point ladder
x(Pa)
x(Qa)
x(Da)

x(Pb)
x(Qb)
x(Db)

ska

x(Ra) = x
(
Pa + [ska]Qa

)

Secret Key Generation

keygenA

x(φa(Pb))
x(φa(Qb))
x(φa(Db))

ska

Figure: Public key generation.
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SIDH main block: derive

1. Secret 2e2 -isogeny;
2. No extra points required;
3. E/〈R〉 denotes the codomain curve of the isogeny with kernel 〈R〉.

2e2-isogeny
construction

Get A-coefficient
x(φb(Pa))
x(φb(Qa))
x(φb(Da))

Three point ladderska

A

x(φb(Ra)) = x
(
φb(Pa) + [ska]φb(Qa)

)

Kernel Generation

deriveA

j
(
Eb/〈φb(Ra)〉

)

Figure: Shared secret derivation
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SIDH protocol: diagram

E Ea

Eb E′

φb

φa

ψb

ψa

Figure: SIDH diagram.

• Alice gets the codomain curve of φb ◦ ψa;
• Bob obtains the codomain curve of φa ◦ ψb;
• What are the kernels of φb ◦ψa and φa ◦ψb?

〈Ra,Rb〉
• Different isogeny composition ordering that gives

isomorphic curves!

. A quick journey on what SI[DH/KE] is 15
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• Different isogeny composition ordering that gives

isomorphic curves!
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Recap to the protocol: SIDH

Public parameters:
E/Fp2 : y2 = x3 + 6x2 + x with p = 2e23e3 − 1,

x(Pa), x(Qa), x(Pa −Qa), x(Pb), x(Qb), and x(Pb −Qb)

Alice

ska,pka ← keygenA()

ssa ← deriveA(ska,pkb)

Bob

skb,pkb ← keygenB()

ssb ← deriveB(skb,pka)

pka

pkb

Figure: SIDH protocol.
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Overview to the protocol: SIKE

Public parameter:
E/Fp2 : y2 = x3 + 6x2 + x with p = 2e23e3 − 1,

x(Pa), x(Qa), x(Pa −Qa), x(Pb), x(Qb), and x(Pb −Qb)

KeyGen

sk3,pk3 ← keygenB()

s
$←− {0, 1}n

Encaps

m
$←− {0, 1}n

sk2 = SHAKE256(m||pk3, e2)
c0 ← keygen∗A(sk2)

j ← deriveA(sk2,pk3)

c1 = SHAKE256(j, n)⊕m

K = SHAKE256(m||c0||c1, k)

Decaps

j′ ← deriveB(sk3,pk2)

m′ = SHAKE256(j′, n)⊕ c1

sk′2 = SHAKE256(m′||pk3, e2)
c′0 ← keygen∗A(sk

′
2)

if c0 = c′0 then

K = SHAKE256(m′||c0||c1, k)
else

K = SHAKE256(s||c0||c1, k)

c0, c1

Figure: SIKE protocol. The keygen∗A () procedure is keygenA() but taking as input ska instead of computing it.
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4 Hard problem on SI[DH/KE]
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SI[DH/KE] key space (remarks)

1. What are the private keys?
2. What are the public keys?
3. What is the shared secret?
4. There are ways to reduce the public-key sizes (not presented in this talk)
5. Let’s see a demo using the sibc python-library
6. Hard problem

• Alice side: Given E and E/〈Pa + [ska]Qa〉, to find the 2e2 -isogeny with kernel 〈Pa + [ska]Qa〉
• Bob side: Given E and E/〈Pb + [skb]Qb〉, to find the 3e3 -isogeny with kernel 〈Pb + [skb]Qb〉
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SI[DH/KE] key space Alice side (2e2-isogenous curves)

E

2e2 different choices: secret 2-isogeny path, public supersingular curve EA = E/〈Pa + [ska]Qa〉

e2 levels

Figure: 2e2 -isogeny tree with root E/Fp2 : y
2 = x3 + Ax2 + x having E[2e2 ] = 〈Pa,Qa〉. Edges describe 2-isogenies.
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SI[DH/KE] key space Bob side (3e3-isogenous curves)

E

3e3 different choices: secret 3-isogeny path, public supersingular curve EB = E/〈Pb + [skb]Qb〉

e3 levels

Figure: 3e3 -isogeny tree with root E/Fp2 : y
2 = x3 + Ax2 + x having E[3e3 ] = 〈Pb,Qb〉. Edges describe 3-isogenies.
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SI[DH/KE] key space Alice side (MITM-based attack)

E

e2
2 levels

EA

e2
2 levels
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SI[DH/KE] key space Bob side (MITM-based attack)

E

e3
2 levels

EB

e3
2 levels
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SI[DH/KE] key space Last remarks

1. How much memory does MITM require?

2
e2
2 ≈ p1/4 cells of memory

2. What is the MITM running time?

1.5× 2
e2
2 ≈ 1.5× p1/4 (in average)

3. Can you implement MITM using the sibc python-library?
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Any questions?

Thanks for attending!

For further questions, contact me by email: jesus.dominguez@tii.ae
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