A quick journey on what SI[DH/KE] is

ASCRYPTO 2021 - cryptography summer school

Jesús-Javier Chi-Domínguez ${ }^{1}$
${ }^{1}$ Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi, UAE
jesus.dominguez@tii.ae

(1) SIDH at glance

2 Kummer line arithmetic and isogenies
(3) Describing SI[DH/KE] main blocks
(4) Hard problem on SI[DH/KE]

Framework: Notation

$=$ Technoilogy
Institution
Int

Finite Fields

- \mathbb{F}_{q} : finite field with q elements
- \mathbb{F}_{q}^{*} : multiplicative group (invertible elements)
- exponentiation: $g^{k}=\underbrace{g \times \cdots \times g}_{k \text { times }}$
- $E\left(\mathbb{F}_{q}\right)$: group of \mathbb{F}_{q}-rational points on the curve E
- point at infinity \mathcal{O} : neutral element in $E\left(\mathbb{F}_{a}\right)$
- scalar point multiplication: $[k] P=\underbrace{P+\cdots+P}$
- order- d point $P:[d] P=\mathcal{O}$
- $x(P)$: x-coordinate of a point P
- p : prime number
- q : a power of p (either p or p^{2})
- $[a \quad$. $b\rceil$: integers in the interval $[a, b]$
- $\stackrel{\$}{\leftarrow}$ random selection from a given set

Framework: Notation

Finite Fields

- \mathbb{F}_{q} : finite field with q elements
- \mathbb{F}_{q}^{*} : multiplicative group (invertible elements)
- exponentiation: $g^{k}=\underbrace{g \times \cdots \times g}_{k \text { times }}$

Elliptic curves

- $E\left(\mathbb{F}_{q}\right)$: group of \mathbb{F}_{q}-rational points on the curve E
- point at infinity \mathcal{O} : neutral element in $E\left(\mathbb{F}_{q}\right)$
- scalar point multiplication: $[k] P=\underbrace{P+\cdots+P}_{k \text { times }}$
- order-d point $P:[d] P=\mathcal{O}$
- $x(P)$: x-coordinate of a point P

Framework: Notation

Finite Fields

- \mathbb{F}_{q} : finite field with q elements
- \mathbb{F}_{q}^{*} : multiplicative group (invertible elements)
- exponentiation: $g^{k}=\underbrace{g \times \cdots \times g}_{k \text { times }}$

Elliptic curves

- $E\left(\mathbb{F}_{q}\right)$: group of \mathbb{F}_{q}-rational points on the curve E
- point at infinity \mathcal{O} : neutral element in $E\left(\mathbb{F}_{q}\right)$
- scalar point multiplication: $[k] P=\underbrace{P+\cdots+P}_{k \text { times }}$
- order-d point $P:[d] P=\mathcal{O}$
- $x(P)$: x-coordinate of a point P

Common notation

- p : prime number
- q : a power of p (either p or p^{2})
- $\llbracket a \ldots b \rrbracket$: integers in the interval $[a, b]$
- $\stackrel{\$}{\leftarrow}$: random selection from a given set

Overview to the protocol: DH and ECDH

Technology
Innovation
innovation
institute

Public parameters:
Multiplicative group \mathbb{F}_{p}^{*}, and
a primitive element $g \in \mathbb{F}_{p}^{*}$

Figure: DH protocol assumes p is a prime number. Notice, public keys are integers.

Remarks

1. Alice and Bob perform the same computations
2. Private keys are integers

Overview to the protocol: DH and ECDH

Public parameters:
Multiplicative group \mathbb{F}_{p}^{*}, and
a primitive element $g \in \mathbb{F}_{p}^{*}$

Figure: DH protocol assumes p is a prime number. Notice, public keys are integers.

Public parameters:

$$
E / \mathbb{F}_{p}: y^{2}=x^{2}+A x+B \text { with } \# E\left(\mathbb{F}_{p}\right)=h r
$$

$$
\text { being } r \approx p \text { a prime number, and an order- } r \text { point } P \in E\left(\mathbb{F}_{p}\right)
$$

Figure: ECDH protocol assumes p is a prime number. Notice, public keys are points.

Remarks

1. Alice and Bob perform the same computations
2. Private keys are integers

Overview to the protocol: DH and ECDH

 innovationinstitute

DH setup

1. $G=\mathbb{F}_{p}^{*}$, and public keys pk 's are integers;
2. keygen() performs modular exponentiations with fixed primitive element $g \in G$;
3. derive() performs modular exponentiations with variable element pk .

ECDH setup

1. $G=E\left(\mathbb{F}_{p}\right)$, and public keys $p k$'s are points;
2. keygen() performs scalar point multiplications with fixed order-r point $g \in G$;
3. derive() performs scalar point multiplications with variable order-r point pk.

Figure: DH protocol on G by using keygen and derive procedures.

Overview to the protocol: SIDH

SIDH setup

1. Montgomery curves with $\# E\left(\mathbb{F}_{p^{2}}\right)=(p+1)^{2}$;
2. Alice's public key involves P_{b} and Q_{b};
3. Bob's public key involves P_{a} and Q_{a};
4. Sum up Kummer line arithmetic and isogenies
5. Alice and Bob perform different computations.
6. Describe keygen ${ }_{A}$ and keygen ${ }_{B}$ blocks $^{\text {b }}$
7. Describe derive ${ }_{\mathrm{A}}$ and derive blocks;
8. Illustrate the hard problem on SI[DH/KE]

Figure: SIDH protocol. Alice's and Bob's secret computations involves $\left\{P_{a}, Q_{a}\right\}$ and $\left\{P_{b}, Q_{b}\right\}$, respectively.

Overview to the protocol: SIDH

Our goals are

1. Montgomery curves with $\# E\left(\mathbb{F}_{p^{2}}\right)=(p+1)^{2}$;
2. Alice's public kev involves P_{h} and O_{h} :
3. Sum up Kummer line arithmetic and isogenies;
4. Describe keygen A_{A} and keygen ${ }_{B}$ blocks;
5. Describe derive ${ }_{A}$ and derive ${ }_{B}$ blocks;
6. Illustrate the hard problem on SI[DH/KE]

Figure: SIDH protocol. Alice's and Bob's secret computations involves $\left\{P_{a}, Q_{a}\right\}$ and $\left\{P_{b}, Q_{b}\right\}$, respectively.
(1) SIDH at glance

2 Kummer line arithmetic and isogenies
(3) Describing SI[DH/KE] main blocks
4) Hard problem on SI[DH/KE] innovation
institute

- Only x-coordinates are required;
- Supersingular curves with $\# E\left(\mathbb{F}_{p^{2}}\right)=(p+1)^{2}$, and j-invariant $j(E)=\frac{256\left(A^{2}-2\right)^{3}}{A^{2}-4}$;
- Three-point ladder: $x(P+[k] Q)$.
$\underbrace{x(P+Q)=\frac{(x(P) x(Q)-1)^{2}}{(x(P)-x(Q))^{2} x(P-Q)}}$
Point addition
$\underbrace{x([2] P)=\frac{\left(x(P)^{2}-1\right)^{2}}{4 x(P)\left(x(P)^{2}+A x(P)+1\right)}}_{\text {Point doubling }}$

$$
\underbrace{x([3] P)=\frac{\left(x(P)^{4}-4 A x(P)-6 x(P)^{2}-3\right)^{2} x(P)}{\left(4 A x(P)^{3}+3 x(P)^{4}+6 x(P)^{2}-1\right)^{2}}}_{\text {Point tripling }}
$$

Kummer line: isogenies (codomain curves)

What is a d-isogeny $\phi: E \rightarrow E^{\prime}$?

- A rational map between two curves with Remarks finite kernel;
- A group homomorphism with $\#$ ker $\phi=d$;

$$
\begin{gathered}
\underbrace{A^{\prime}=2\left(1-2 x\left(P_{2}\right)^{2}\right)}_{\text {2-isogeny }} \quad \underbrace{A^{\prime}=\left(A x\left(P_{3}\right)-6 x\left(P_{3}\right)^{2}+6\right) x\left(P_{3}\right)}_{\text {3-isogeny }} \\
\underbrace{A^{\prime}=4 x\left(P_{4}\right)^{2}-2}_{\text {4-isogeny }}
\end{gathered}
$$

What is a d-isogeny $\delta: E \rightarrow E$? Remarks

- A rational map between two curves with
- A group homomorphism with $\# \operatorname{ker} \phi=d$;

$$
\underbrace{A^{\prime}=2\left(1-2 x\left(P_{2}\right)^{2}\right)}_{\text {2-isogeny }}
$$

$$
\underbrace{A^{\prime}=\left(A x\left(P_{3}\right)-6 x\left(P_{3}\right)^{2}+6\right) x\left(P_{3}\right)}_{3 \text {-isogeny }}
$$

$$
\underbrace{A^{\prime}=4 x\left(P_{4}\right)^{2}-2}_{4 \text {-isogeny }}
$$

Why $(0,0)$ cannot live in ker ϕ ?

Kummer line: isogenies (codomain curves)

 Innovationinstitute

What is a d-isogeny

- A rational man betr een two curves with
$\underbrace{A^{\prime}=2\left(1-2 x\left(P_{2}\right)^{2}\right)}_{\text {2-isogeny }}$
$\underbrace{A^{\prime}=\left(A x\left(P_{3}\right)-6 x\left(P_{3}\right)^{2}+6\right) x\left(P_{3}\right)}_{\text {3-isogeny }}$

$$
\underbrace{A^{\prime}=4 x\left(P_{4}\right)^{2}-2}_{4 \text {-isogeny }}
$$

Why $(0,0)$ cannot live in $\operatorname{ker} \phi$? It gives $A=2$, and then $j\left(E^{\prime}\right)$ is undetermined (there is a division by zero)

- SI[DH/KE] performs large $2^{\mathrm{e}_{2}}$-isogenies and $3^{\mathrm{e}_{3}}$-isogenies;
- So we need an efficient way to map points to codomain curves;

$$
\begin{aligned}
\underbrace{x(\phi(Q))=}_{\text {2-isogeny }} \begin{aligned}
\frac{x(Q)^{2} x\left(P_{2}\right)-x(Q)}{x(Q)-x\left(P_{2}\right)} & \underbrace{x(\phi(Q))=\frac{x(Q)\left(x(Q) x\left(P_{3}\right)-1\right)^{2}}{\left(x(Q)-x\left(P_{3}\right)\right)^{2}}}_{\text {3-isogeny }} \\
& \underbrace{x(\phi(Q))=\frac{-\left(x(Q) x\left(P_{4}\right)^{2}+x(Q)-2 x\left(P_{4}\right)\right) x(Q)\left(x(Q) x\left(P_{4}\right)-1\right)^{2}}{\left(x(Q)-x\left(P_{4}\right)\right)^{2}\left(2 x(Q) x\left(P_{4}\right)-x\left(P_{4}\right)^{2}-1\right)}}_{\text {4-isogeny }}
\end{aligned}
\end{aligned}
$$

Kummer line: isogenies chain (example)

Figure: Strategy evaluation for isogenies chains

Computing a 2^{10}-isogeny by using an order- 2^{10} point P :

1. Split the task into 10 2-isogenies;
2. Compute $K_{1}=\left[2^{9}\right]$, and the 2-isogeny 3. Get $_{1} \mathrm{P}_{1}=\phi_{1}(P)$. Which 4. Compute $\mathrm{K}_{2}=\left[^{-8-7}\right.$, and the 2-isogeny 5. The i-th 2 -isogeny has kernel generator 6. Different strategies!
3. Which is the running time of this strategy?
4. Dynamic programming gives $O\left(e_{2} \log _{7}\left(e_{2}\right)\right.$

Kummer line: isogenies chain (example)

 innovationinstitute

Figure: Strategy evaluation for isogenies chains

Computing a 2^{10}-isogeny by using an order- 2^{10} point P :

1. Split the task into 10 2-isogenies;
2. Compute $K_{1}=\left[2^{9}\right] P$, and the 2-isogeny $\phi_{1}: E \rightarrow E_{1}$ with kernel $\left\langle K_{1}\right\rangle$;
3. Get $P_{1}=\phi_{1}(P)$. Which is the order of $\phi_{1}(P$
4. Compute $K_{2}=\left[2^{8}\right] P_{1}$, and the 2-isogeny
5. The i-th 2 -isogeny has kernel generator
6. Different strategies!
7. Which is the runnina tirne of this strategy?
8. Dynamic programming gives $\mathrm{O}\left(e_{2} \log _{2}\left(e_{2}\right)\right.$

Kummer line: isogenies chain (example)

 innovationinstitute

Figure: Strategy evaluation for isogenies chains

Computing a 2^{10}-isogeny by using an order- 2^{10} point P :

1. Split the task into 10 2-isogenies;
2. Compute $K_{1}=\left[2^{9}\right]$, and the 2 -isogeny
3. Get $P_{1}=\phi_{1}(P)$. Which is the order of $\phi_{1}(P)$? 4.
4. The i-th 2 -isogeny has kernel generator 6. Different strategies!
5. Which is the running time of this strategy?
6. Dynamic programming gives $O\left(e_{2} \log _{2}\left(e_{2}\right)\right)$

Kummer line: isogenies chain (example)

 Innovationinstitute

2-isogeny evaluations

Figure: Strategy evaluation for isogenies chains

Computing a 2^{10}-isogeny by using an order- 2^{10} point P :

1. Split the task into 10 2-isogenies;
2. Compute $K_{1}=\left[2^{9}\right]$ P, and the 2-isogeny $\phi_{1}: E \rightarrow E_{1}$ with kernel $\left\langle K_{1}\right.$
3. Compute $K_{2}=\left[2^{8}\right] P_{1}$, and the 2-isogeny $\phi_{1}: E_{1} \rightarrow E_{2}$ with kernel $\left\langle K_{2}\right\rangle$;
4. The i-th 2 -isogeny has kernel generator
5. Different strategies!
6. Which is the runninct tir of this strategy?
7. Dynamic programming gives $\mathrm{O}\left(\mathrm{e}_{2} \log _{2}\left(e_{2}\right)\right.$

Kummer line: isogenies chain (example)

 nnovationnstitute

2-isogeny evaluations

Figure: Strategy evaluation for isogenies chains

Computing a 2^{10}-isogeny by using an order- 2^{10} point P :

1. Split the task into 10 2-isogenies;
2. Compute $K_{1}=\left[2^{9}\right]$ P, and the 2-isogeny
3. Get $P_{1}=\phi_{1}(P)$. Which is the order of $\phi_{1}(P$
4. Compute $K_{2}=\left[2^{8}\right] P_{1}$, and the 2-isogeny
5. The i-th 2-isogeny has kernel generator $K_{i}=\phi_{1} \circ \cdots \circ \phi_{i-1}\left(\left[2^{10-i}\right] P\right)$.
6. Different strategies!
7. Which is the running time of this strategy?
8. Dynamic programming gives $O\left(e_{2} \log _{9}\left(e_{2}\right)\right.$

Kummer line: isogenies chain (example)

Figure: Strategy evaluation for isogenies chains

Computing a 2^{10}-isogeny by using an order- 2^{10} point P :

1. Split the task into 10 2-isogenies;
2. Compute $K_{1}=\left[2^{9}\right]$, and the 2-isogeny
3. Get $P_{1}=\phi_{1}(P)$. Which is the order of $\phi_{1}(P$
4. Compute $K_{2}=\left[2^{8}\right] P_{1}$, and the 2 -isoqenv
5. The i-th 2 -isogeny has kernel generator
6. Different strategies!
7. Which is the running time of this strategy?
8. Dynamic programming gives $O\left(e_{2} \log _{2}\left(e_{2}\right)\right.$

Kummer line: isogenies chain (example)

 innovationinstitute

Figure: Strategy evaluation for isogenies chains

Computing a 2^{10}-isogeny by using an order- 2^{10} point P :

1. Split the task into 10 2-isogenies;
2. Compute $K_{1}=\left[2^{9}\right]$, and the 2-isogeny
3. Get $P_{1}=\phi_{1}(P)$. Which is the order of $\phi_{1}(P$
4. Compute $K_{2}=\left[2^{8}\right] P_{1}$, and the 2-isoqeny
5. The i-th 2-isogeny has kernel generator
6. Different strategies! Any idea to find an optimal one?
7. Which is the running time of this strategy? Quadratic complexity!

Kummer line: isogenies chain (example)

 Innovationinstitute

Figure: Strategy evaluation for isogenies chains

Computing a $2^{\mathrm{e}_{2}}$-isogeny by using an order- $2^{\mathrm{e}_{2}}$ point P :

1. Split the task into e_{2} 2-isogenies;
2. Compute $K_{1}=\left[2^{9}\right]$, and the 2-isogeny
3. Get $P_{1}=\phi_{1}(P)$. Which is the order of
4. Comnute $K_{2}=\left[2^{8}\right] P_{1}$, and the 2 -isocienv
5. The i-th 2 -isogeny has kernel generator
6. Different strategies! Any idea to find an optimal one?
Which is the running time of this strategy?
Quadratic complexity!
7. Dynamic programming gives $\mathrm{O}\left(\mathrm{e}_{2} \log _{2}\left(e_{2}\right)\right)$
(1) SIDH at glance

2 Kummer line arithmetic and isogenies
(3) Describing SI[DH/KE] main blocks
4) Hard problem on SI[DH/KE]

1. Staring curve $E: y^{2}=x^{3}+6 x^{2}+x$;
2. Pushing public order-3 $3^{e_{3}}$; points through a secret $2^{\mathrm{e}_{2}}$-isogeny.

Figure: Public key generation.

1. Staring curve $E: y^{2}=x^{3}+6 x^{2}+x$;
2. Pushing public order-2 $2^{e_{2}}$; points through a secret $3^{e_{3}}$-isogeny.

Figure: Public key generation.

1. Secret $2^{\mathrm{e}_{2}}$-isogeny;
2. No extra points required;
3. $E /\langle R\rangle$ denotes the codomain curve of the isogeny with kernel $\langle R\rangle$.

Figure: Shared secret derivation

1. Secret $3^{\mathrm{e}_{3}}$-isogeny;
2. No extra points required;
3. $E /\langle R\rangle$ denotes the codomain curve of the isogeny with kernel $\langle R\rangle$.

Figure: Shared secret derivation

- Alice gets the codomain curve of $\phi_{b} \circ \psi_{a}$;
- Bob obtains the codomain curve of $\phi_{a} \circ \psi_{b}$ - What are the kernels of $\phi_{b} \circ \psi_{a}$ and $\phi_{a} \circ \psi_{b}$?

Figure: SIDH diagram.

- Alice gets the codomain curve of $\phi_{b} \circ \psi_{a}$;
- Bob obtains the codomain curve of $\phi_{a} \circ \psi_{b}$; What are the kernels of $\phi_{b} \circ \psi_{a}$ and $\phi_{a} \circ \psi_{b}$?

Figure: SIDH diagram.

- Alice gets the codomain curve of $\phi_{b} \circ \psi_{a}$;
- Bob obtains the codomain curve of $\phi_{a} \circ \psi_{b}$;
- What are the kernels of $\phi_{b} \circ \psi_{a}$ and $\phi_{a} \circ \psi_{b}$?

Figure: SIDH diagram.

Figure: SIDH diagram.

- Alice gets the codomain curve of $\phi_{b} \circ \psi_{a}$;
- Bob obtains the codomain curve of $\phi_{a} \circ \psi_{b}$;
- What are the kernels of $\phi_{b} \circ \psi_{a}$ and $\phi_{a} \circ \psi_{b} ?\left\langle R_{a}, R_{b}\right\rangle$
- Different isogeny composition ordering that gives isomorphic curves!

Figure: SIDH protocol.

Overview to the protocol: SIKE

Public parameter:

$$
E / \mathbb{F}_{p^{2}}: y^{2}=x^{3}+6 x^{2}+x \text { with } p=2^{e_{2}} 3^{e_{3}}-1
$$

$$
x\left(P_{a}\right), x\left(Q_{a}\right), x\left(P_{a}-Q_{a}\right), x\left(P_{b}\right), x\left(Q_{b}\right), \text { and } x\left(P_{b}-Q_{b}\right)
$$

Figure: SIKE protocol. The keygen $_{A}^{*}()$ procedure is keygen () but taking as input ska instead of computing it.

Overview to the protocol: SIKE

Public parameter:

$$
E / \mathbb{F}_{p^{2}}: y^{2}=x^{3}+6 x^{2}+x \text { with } p=2^{e_{2}} 3^{e_{3}}-1
$$

$$
x\left(P_{a}\right), x\left(Q_{a}\right), x\left(P_{a}-Q_{a}\right), x\left(P_{b}\right), x\left(Q_{b}\right), \text { and } x\left(P_{b}-Q_{b}\right)
$$

Figure: SIKE protocol. The keygen $_{A}^{*}()$ procedure is keygen () but taking as input ska instead of computing it.

Overview to the protocol: SIKE

Public parameter:

$$
E / \mathbb{F}_{p^{2}}: y^{2}=x^{3}+6 x^{2}+x \text { with } p=2^{e_{2}} 3^{e_{3}}-1,
$$

$$
x\left(P_{a}\right), x\left(Q_{a}\right), x\left(P_{a}-Q_{a}\right), x\left(P_{b}\right), x\left(Q_{b}\right), \text { and } x\left(P_{b}-Q_{b}\right)
$$

Figure: SIKE protocol. The keygen $_{A}^{*}()$ procedure is keygen () but taking as input ska instead of computing it.

1 SIDH at glance

2 Kummer line arithmetic and isogenies
(3) Describing SI[DH/KE] main blocks

4 Hard problem on SI[DH/KE]

SI[DH/KE] key space (remarks)

1. What are the private keys?
2. What are the public keys?
3. What is the shared secret?

4 There are wavs to reduce the bublic-key sizes (not presented in this talk)
5. Let's see a demo using the sibc python-library

SI[DH/KE] key space (remarks)

1. What are the private keys? integers of $\frac{\log _{2}(p)}{2}$ bits
2. There are ways to reduce the public-key sizes (not presented in this talk)
3. Let's see a demo usina the sibc python-library

- Alice side: Given E and $E /\left\langle\mathrm{Pa}_{a}+\left[\mathrm{sk}_{a}\right] Q_{a}\right\rangle$, to find the $2^{\mathrm{e}_{2} \text {-isogeny } \text { with kernel }\left\langle P_{a}+\left[s \mathrm{sk}_{a}\right] Q_{a}\right\rangle} \begin{aligned} & \text { - Bob side: } G i v e n ~ \\ & \text { and } E /\left\langle P_{b}+\left[\mathrm{sk}_{b}\right] Q_{b}\right\rangle \text {, to find the } 3^{\mathrm{e}_{3}} \text {-isogeny with kernel }\left\langle P_{b}+\left[\mathrm{sk}_{b}\right] Q_{b}\right\rangle\end{aligned}$

2. What are the public keys?
3. What is the shared secret
4. There are ways to reduce the public-key sizes (not presented in this talk)
5. Let's see a demo using the sibc nvthon-library

SI[DH/KE] key space (remarks)

2. What are the public keys? three x-coordinates of $2 \log _{2}(p)$ bits: total of $6 \log _{2}(p)$
3. There are ways to reduce the public-key sizes (not presented in this talk)
4. Let's see a demo usina the sibc pvthon-library

- Alice side: Given E and $E /\left\langle P_{a}+\left[s k_{a}\right] Q_{a}\right\rangle$, to find the $2^{e_{2}-\text {-isogeny }}$ with kernel $\left\langle P_{a}+\left[s k_{a}\right] Q_{a}\right.$
- Bob side: Given E and $E /\left\langle P_{b}+\left[\mathrm{sk}_{b}\right] Q_{b}\right\rangle$, to find the $3^{e_{3}-i s o g e n y ~ w i t h ~ k e r n e l ~}\left\langle P_{b}+\left[\mathrm{sk}_{b}\right] Q_{b}\right\rangle$

1. What are the private keys? integers of $\frac{\log _{2}(p)}{2}$ bits
2. What is the shared secret?
3. There are ways to reduce the public-key sizes (not presented in this talk)
4. Let's see a demo using the sibc python-library
5. What are the private keys? integers of $\frac{\log _{2}(p)}{2}$ bits
6. What is the shared secret? an $\mathbb{F}_{p^{2}}$-element of $2 \log _{2}(p)$ bits
7. There are ways to reduce the public-key sizes (not presented in this talk)
8. Let's see a demo using the sibc python-library

- Alice side: Given E and $E /\left\langle P_{a}+\left[s k_{a}\right] Q_{a}\right\rangle$, to find the $2^{e_{2}}$-isogeny with kernel $\left\langle P_{a}+\left[s k_{a}\right] Q_{a}\right.$

Technology
Innovation
Technoilogy
Institution
ind

1. What are the private keys? integers of $\frac{\log _{2}(p)}{2}$ bits
2. What are the public kevs? three x-coordinates of $2 \mathrm{lc} \mathrm{l}_{2}(p)$ bits: total of $6 \log _{2}(p)$
3. There are ways to reduce the public-key sizes (not presented in this talk)

SI[DH/KE] key space (remarks)

1. What are the private keys? integers of $\frac{\log _{2}(p)}{2}$ bits
2. What are the public kevs? three x-coordinates of 2 lc
3. What is the shared secret? an $\mathbb{F}_{p^{2}}$-element of $2 \log _{2}(p)$ bits
4. Let's see a demo using the sibc python-library

SI[DH/KE] key space (remarks)

nnovation
nstitute

1. What are the private keys? integers of $\frac{\log _{2}(p)}{2}$ bits

2. What is the shared secret? an $\mathbb{F}_{p^{2}}$-element of $2 \log _{2}(p)$ bits
3. There are ways to reduce the public-key sizes (not presented in this talk)
4. Hard problem

- Alice side: Given E and $E /\left\langle P_{a}+\left[\mathrm{sk}_{a}\right] Q_{a}\right\rangle$, to find the $2^{\mathrm{e}_{2}-\text { isogeny }}$ with kernel $\left\langle P_{a}+\left[\mathrm{sk}_{a}\right] Q_{a}\right\rangle$
- Bob side: Given E and $E /\left\langle P_{b}+\left[\mathrm{sk}_{b}\right] Q_{b}\right\rangle$, to find the $3^{\left.\mathrm{e}_{3} \text {-isogeny with kernel }\left\langle P_{b}+\left[\mathrm{sk}_{b}\right] Q_{b}\right\rangle\right) .}$

Figure: $2^{\mathrm{e}_{2}}$-isogeny tree with root $E / \mathbb{F}_{p^{2}}: y^{2}=x^{3}+A x^{2}+x$ having $E\left[2^{\mathrm{e}_{2}}\right]=\left\langle P_{a}, Q_{a}\right\rangle$. Edges describe 2-isogenies.

$\frac{e_{3}}{2}$ levels

SI[DH/KE] key space Last remarks

$=$ TiI)

1. How much memory does MITM require?
2. What is the MITM running time?
3. Can you implement MITM using the sibe python-library?

SI[DH/KE] key space Last remarks

\#

1. How much memory does MITM require? $2^{\frac{e_{2}}{2}} \approx p^{1 / 4}$ cells of memory
2. Can you implement MITM using the sibe python-library?
3. How much memory does MITM require? $2^{\frac{e_{2}}{2}} \approx p^{1 / 4}$ cells of memory
4. What is the MITM running time?
5. Can you implement MITM using the sibe python-library?
6. How much memory does MITM require? $2^{\frac{e_{2}}{2}} \approx p^{1 / 4}$ cells of memory
7. What is the MITM running time? $1.5 \times 2^{\frac{e_{2}}{2}} \approx 1.5 \times p^{1 / 4}$ (in average)
8. How much memory does MITM require? $2^{\frac{e_{2}}{2}} \approx p^{1 / 4}$ cells of memory
9. What is the MITM running time? $1.5 \times 2^{\frac{e_{2}}{2}} \approx 1.5 \times p^{1 / 4}$ (in average)
10. Can you implement MITM using the sibc python-library?

Any questions?

$=$
innovation
institute

Thanks for attending!

For further questions, contact me by email: jesus.dominguez@tii.ae

References I

[1] Craig Costello and Benjamin Smith.
Montgomery curves and their arithmetic - the case of large characteristic fields. J. Cryptogr. Eng., 8(3):227-240, 2018.
[2] Gora Adj, Jesús-Javier Chi-Domínguez, and Francisco Rodríguez-Henríquez.
SIBC python library.
https://github.com/JJChiDguez/sibc/, 2021.
[3] Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, Aaron Hutchinson, Amir Jalali, David Jao, Koray Karabina, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Geovandro Pereira, Joost Renes, Vladimir Soukharev, and David Urbanik. SIDH v3.4 (C Edition).
https://github.com/microsoft/PQCrypto-SIDH, 2021.
Online; accessed 9 June 2021.
[4] Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, Aaron Hutchinson, Amir Jalali, David Jao, Koray Karabina, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Geovandro Pereira, Joost Renes, Vladimir Soukharev, and David Urbanik. Supersingular Isogeny Key Encapsulation.
https://sike.org/files/SIDH-spec.pdf, 2021.
Online; accessed 9 June 2021.

