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REGA overview

Group Action

Let (G, ◦) be a group with identity element id ∈ G, and X a set. A map

⋆ : G × X → X

is a group action if it satisfies the following properties:
1. Identity: id ⋆x = x for all x ∈ X .
2. Compatibility: (g ◦ h) ⋆ x = g ⋆ (h ⋆ x) for all g, h ∈ G and x ∈ X .

Restricted Effective Group Action

Let (G,X , ⋆) be a group action and let g = (g1, ..., gn) be a set of elements in G and denote H = ⟨g1, . . . , gn⟩ for the
subgroup generated by these elements. Assume that the following properties are satisfied:

1. G is finite, commutative, and n = poly(log(#H)).
2. X is finite, and there exist efficient algorithms for membership testing and computing a unique representation.
3. There exists a distinguished element x̃ ∈ X with known representation.

4. There exists an efficient algorithm that given gi ∈ g and x ∈ X , outputs gi ⋆ x and g−1
i ⋆ x.

Then we call (G,H,X , ⋆, x̃) a restricted effective group action (REGA).
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REGA overview

Vector representation. Let (G,H,X , ⋆, x̃) be a REGA with g = (g1, . . . , gn). Elements in H can be
represented as vectors v ∈ Zn under the mapping ϕ : Zn → H, where

ϕ : v = (v1, . . . , vn) 7→
n∏

i=1

gi
vi .

Via the map ϕ, we define the action of Zn on X . Slightly abusing notation, we denote v ⋆ x = ϕ(v) ⋆ x.
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REGA-based Diffie-Hellman protocol

Setup: A REGA (G,H,X , ⋆, x̃) with g = (g1, . . . , gn) and a finite set SK ⊂ Zn.

Alice

a
$←− SK

xa ← a ⋆ x̃

Ka ← a ⋆ xb = (a+ b) ⋆ x̃

Bob

b
$←− SK

xb ← b ⋆ x̃

Kb ← b ⋆ xa = (b+ a) ⋆ x̃

xa

xb

Figure: A REGA-based Diffie-Hellman protocol.

Security. For this protocol to be secure, the following problems need to be hard.

1. GA-DLOG: Given (x, y) ∈ X 2, determine g ∈ G such that y = g ⋆ x.
2. GA-CDH: Given (x, y, z) ∈ X 3, find w ∈ X such that there exists g ∈ G with y = g ⋆ x and w = g ⋆ z.

3. REGA-DLOGSK: Given (x, y) ∈ X 2, determine v ∈ SK such that y = v ⋆ x if such a vector v exists.

Group actions satisfying these hardness assumptions are known as cryptographic group actions [1].
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REGA-based Diffie-Hellman protocol: CSIDH scenario

Lemma

Let (G,H,X , ⋆, x̃) be a REGA with g = (g1, . . . , gn). Let m ∈ N and consider

SK1 = {−m, . . . ,m}n, SK2 = {0, . . . , 2m}n, and SK3 = {−2m,−2(m− 1), . . . , 2m}n.
Then REGA-DLOGSK1 and REGA-DLOGSK2 are equivalent.
Further let H̃ = {g ◦ g | g ∈ H} ⊂ H, and g̃ = (g̃1 = g1 ◦ g1, . . . , g̃n = gn ◦ gn).

2. An instance (G,H,X , ⋆, x̃, g, x, y) of REGA-DLOGSK3 can be transformed to an instance
(
G, H̃,X , ⋆, x̃, g̃, x, y

)
of REGA-DLOGSK1 .

3. In particular if #H is odd, then REGA-DLOGSK3 reduces to REGA-DLOGSK1 .

Isogeny-based REGAs. The analysis in the original CSIDH paper [2] illustrates a practical example of a
REGA, where

G is the ideal class group cl(O) with O = Z[π],
H is the subgroup generated by g = ([l1], . . . , [ln]) with li = (ℓi, π − 1) ◁O,

X is Eℓℓp(O) = {EA : y2 = x3 + Ax2 + x | A ∈ Fp and EA is supersingular},
⋆ is the CSIDH group action, and

x̃ is the supersingular curve E0 : y2 = x3 + x over Fp.
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Adapting Techniques to the REGA-DLOGm Setting

Given x, y ∈ X , we want to find v ∈ SK1 with y = v ⋆ x. Let us focus on the case m = 1 for simplicity. Let
N = #H, Nm = 3n ≪ N, and W = 3ωn for some ω ∈ J0,0.5K.
Let

SK1 = {−1,0, 1}n, SK2 = {0, 1, 2}n, and SK3 = {−2,0, 2}n.

• Pollard-style random walks based on [5, 4]. Time complexity: O(
√
N);

• Meet-in-the-Middle (MitM). Memory and Time complexities: O(30.5n).

• Parallel Collision Search (PCS): Memory complexity Õ (W), and Time complexity Õ
(
3(0.75−0.5ω)n

)
.

• Representation-based Approach (This work): α = 1/3 implies Memory complexity Õ (W), and Time
complexity Õ

(
3(0.675−0.5ω)n

)
when ω ≤ 0.22.

• Partial Representation (This work):
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complexity Õ
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Adapting Techniques to the REGA-DLOGm Setting
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Potential Impact on Bit Security Level: CSIDH scenario

In the SQALEd-CSIDH [3], three concrete parameter instantiations for ternary-key are given, respectively,
aiming at satisfying NIST security level L1, L2 and L3. To match the security definition of category Li the
authors impose restrictions on the memory and time complexity of Mi = 2wi and Ti = 2ti with

(w1,w2,w3) = (80, 100, 119) and (t1, t2, t3) = (128, 128, 192).

Additionally,

• The number of generators ni are equal to n1 = 139 for L1, n2 = 148 for L2 and n3 = 210 for L3.
• The security of those parameter sets is determined via the PCS time-memory trade-off.
• In the memory restrictions, the authors of [3] conservatively ignore polynomial factors.

Consequently, it holds Mi = 3cini = 2wi , which allows to determine the asymptotic memory exponent as
ci =

wi
ni·log2 3 . Then, we obtain

1. c1 ≈ 0.3631 and running time TPCS = 30.5685n.

This work: TRep = 30.5316n (gain of 8.13 bits).

2. c2 ≈ 0.4263 and running time TPCS = 30.5369n.

This work: TRep = 30.5174n (gain of 4.57 bits).

3. c3 ≈ 0.3575 and running time TPCS = 30.5713n.

This work: TRep = 30.5330n (gain of 12.75 bits).
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Questions?

Thanks for attending!
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