
Low Memory Attacks on Small Key CSIDH
21st International Conference on Applied Cryptography and Network Security

(ACNS 2023)

Jesús-Javier Chi-Domínguez 1, Andre Esser 1, Sabrina Kunzweiler2,3, and Alexander May3

1 Cryptography Research Center, Technology Innovation Institute, Abu Dhabi, UAE
2 Univ. Bordeaux, CNRS, Bordeaux INP, Inria, France

3 Ruhr University Bochum, Germany
{jesus.dominguez, andre.esser}@tii.ae,
sabrina.kunzweiler@math.u-bordeaux.fr,

alex.may@rub.de

June 20, 2023



1 REGA overview

2 REGA-based Diffie-Hellman protocol

3 Adapting Techniques to the REGA-DLOGm Setting

4 Potential Impact on Bit Security Level

✎ Low Memory Attacks on Small Key CSIDH 2



REGA overview

Group Action

Let (G, ◦) be a group with identity element id ∈ G, and X a set. A map

⋆ : G × X → X

is a group action if it satisfies the following properties:
1. Identity: id ⋆x = x for all x ∈ X .
2. Compatibility: (g ◦ h) ⋆ x = g ⋆ (h ⋆ x) for all g, h ∈ G and x ∈ X .

Restricted Effective Group Action

Let (G,X , ⋆) be a group action and let g = (g1, ..., gn) be a set of elements in G and denote H = ⟨g1, . . . , gn⟩ for the
subgroup generated by these elements. Assume that the following properties are satisfied:

1. G is finite, commutative, and n = poly(log(#H)).
2. X is finite, and there exist efficient algorithms for membership testing and computing a unique representation.
3. There exists a distinguished element x̃ ∈ X with known representation.

4. There exists an efficient algorithm that given gi ∈ g and x ∈ X , outputs gi ⋆ x and g−1
i ⋆ x.

Then we call (G,H,X , ⋆, x̃) a restricted effective group action (REGA).

✎ Low Memory Attacks on Small Key CSIDH 3



REGA overview

Group Action

Let (G, ◦) be a group with identity element id ∈ G, and X a set. A map

⋆ : G × X → X

is a group action if it satisfies the following properties:
1. Identity: id ⋆x = x for all x ∈ X .
2. Compatibility: (g ◦ h) ⋆ x = g ⋆ (h ⋆ x) for all g, h ∈ G and x ∈ X .

Restricted Effective Group Action

Let (G,X , ⋆) be a group action and let g = (g1, ..., gn) be a set of elements in G and denote H = ⟨g1, . . . , gn⟩ for the
subgroup generated by these elements. Assume that the following properties are satisfied:

1. G is finite, commutative, and n = poly(log(#H)).
2. X is finite, and there exist efficient algorithms for membership testing and computing a unique representation.
3. There exists a distinguished element x̃ ∈ X with known representation.

4. There exists an efficient algorithm that given gi ∈ g and x ∈ X , outputs gi ⋆ x and g−1
i ⋆ x.

Then we call (G,H,X , ⋆, x̃) a restricted effective group action (REGA).

✎ Low Memory Attacks on Small Key CSIDH 3



REGA overview

Vector representation. Let (G,H,X , ⋆, x̃) be a REGA with g = (g1, . . . , gn). Elements in H can be
represented as vectors v ∈ Zn under the mapping ϕ : Zn → H, where

ϕ : v = (v1, . . . , vn) 7→
n∏

i=1

gi
vi .

Via the map ϕ, we define the action of Zn on X . Slightly abusing notation, we denote v ⋆ x = ϕ(v) ⋆ x.

✎ Low Memory Attacks on Small Key CSIDH 4



1 REGA overview

2 REGA-based Diffie-Hellman protocol

3 Adapting Techniques to the REGA-DLOGm Setting

4 Potential Impact on Bit Security Level

✎ Low Memory Attacks on Small Key CSIDH 5



REGA-based Diffie-Hellman protocol

Setup: A REGA (G,H,X , ⋆, x̃) with g = (g1, . . . , gn) and a finite set SK ⊂ Zn.

Alice

a
$←− SK

xa ← a ⋆ x̃

Ka ← a ⋆ xb = (a+ b) ⋆ x̃

Bob

b
$←− SK

xb ← b ⋆ x̃

Kb ← b ⋆ xa = (b+ a) ⋆ x̃

xa

xb

Figure: A REGA-based Diffie-Hellman protocol.

Security. For this protocol to be secure, the following problems need to be hard.

1. GA-DLOG: Given (x, y) ∈ X 2, determine g ∈ G such that y = g ⋆ x.
2. GA-CDH: Given (x, y, z) ∈ X 3, find w ∈ X such that there exists g ∈ G with y = g ⋆ x and w = g ⋆ z.

3. REGA-DLOGSK: Given (x, y) ∈ X 2, determine v ∈ SK such that y = v ⋆ x if such a vector v exists.

Group actions satisfying these hardness assumptions are known as cryptographic group actions [1].
✎ Low Memory Attacks on Small Key CSIDH 6



REGA-based Diffie-Hellman protocol

Setup: A REGA (G,H,X , ⋆, x̃) with g = (g1, . . . , gn) and a finite set SK ⊂ Zn.

Alice

a
$←− SK

xa ← a ⋆ x̃

Ka ← a ⋆ xb = (a+ b) ⋆ x̃

Bob

b
$←− SK

xb ← b ⋆ x̃

Kb ← b ⋆ xa = (b+ a) ⋆ x̃

xa

xb

Figure: A REGA-based Diffie-Hellman protocol.

Security. For this protocol to be secure, the following problems need to be hard.

1. GA-DLOG: Given (x, y) ∈ X 2, determine g ∈ G such that y = g ⋆ x.
2. GA-CDH: Given (x, y, z) ∈ X 3, find w ∈ X such that there exists g ∈ G with y = g ⋆ x and w = g ⋆ z.

3. REGA-DLOGSK: Given (x, y) ∈ X 2, determine v ∈ SK such that y = v ⋆ x if such a vector v exists.

Group actions satisfying these hardness assumptions are known as cryptographic group actions [1].
✎ Low Memory Attacks on Small Key CSIDH 6



REGA-based Diffie-Hellman protocol

Setup: A REGA (G,H,X , ⋆, x̃) with g = (g1, . . . , gn) and a finite set SK ⊂ Zn.

Alice

a
$←− SK

xa ← a ⋆ x̃

Ka ← a ⋆ xb = (a+ b) ⋆ x̃

Bob

b
$←− SK

xb ← b ⋆ x̃

Kb ← b ⋆ xa = (b+ a) ⋆ x̃

xa

xb

Figure: A REGA-based Diffie-Hellman protocol.

Security. For this protocol to be secure, the following problems need to be hard.

1. GA-DLOG: Given (x, y) ∈ X 2, determine g ∈ G such that y = g ⋆ x.
2. GA-CDH: Given (x, y, z) ∈ X 3, find w ∈ X such that there exists g ∈ G with y = g ⋆ x and w = g ⋆ z.
3. REGA-DLOGSK: Given (x, y) ∈ X 2, determine v ∈ SK such that y = v ⋆ x if such a vector v exists.

Group actions satisfying these hardness assumptions are known as cryptographic group actions [1].
✎ Low Memory Attacks on Small Key CSIDH 6



REGA-based Diffie-Hellman protocol: CSIDH scenario

Lemma

Let (G,H,X , ⋆, x̃) be a REGA with g = (g1, . . . , gn). Let m ∈ N and consider

SK1 = {−m, . . . ,m}n, SK2 = {0, . . . , 2m}n, and SK3 = {−2m,−2(m− 1), . . . , 2m}n.
Then REGA-DLOGSK1 and REGA-DLOGSK2 are equivalent.
Further let H̃ = {g ◦ g | g ∈ H} ⊂ H, and g̃ = (g̃1 = g1 ◦ g1, . . . , g̃n = gn ◦ gn).

2. An instance (G,H,X , ⋆, x̃, g, x, y) of REGA-DLOGSK3 can be transformed to an instance
(
G, H̃,X , ⋆, x̃, g̃, x, y

)
of REGA-DLOGSK1 .

3. In particular if #H is odd, then REGA-DLOGSK3 reduces to REGA-DLOGSK1 .

Isogeny-based REGAs. The analysis in the original CSIDH paper [2] illustrates a practical example of a
REGA, where

G is the ideal class group cl(O) with O = Z[π],
H is the subgroup generated by g = ([l1], . . . , [ln]) with li = (ℓi, π − 1) ◁O,

X is Eℓℓp(O) = {EA : y2 = x3 + Ax2 + x | A ∈ Fp and EA is supersingular},
⋆ is the CSIDH group action, and

x̃ is the supersingular curve E0 : y2 = x3 + x over Fp.

✎ Low Memory Attacks on Small Key CSIDH 7



REGA-based Diffie-Hellman protocol: CSIDH scenario

Lemma

Let (G,H,X , ⋆, x̃) be a REGA with g = (g1, . . . , gn). Let m ∈ N and consider

SK1 = {−m, . . . ,m}n, SK2 = {0, . . . , 2m}n, and SK3 = {−2m,−2(m− 1), . . . , 2m}n.
Then REGA-DLOGSK1 and REGA-DLOGSK2 are equivalent.
Further let H̃ = {g ◦ g | g ∈ H} ⊂ H, and g̃ = (g̃1 = g1 ◦ g1, . . . , g̃n = gn ◦ gn).

2. An instance (G,H,X , ⋆, x̃, g, x, y) of REGA-DLOGSK3 can be transformed to an instance
(
G, H̃,X , ⋆, x̃, g̃, x, y

)
of REGA-DLOGSK1 .

3. In particular if #H is odd, then REGA-DLOGSK3 reduces to REGA-DLOGSK1 .

Isogeny-based REGAs. The analysis in the original CSIDH paper [2] illustrates a practical example of a
REGA, where

G is the ideal class group cl(O) with O = Z[π],
H is the subgroup generated by g = ([l1], . . . , [ln]) with li = (ℓi, π − 1) ◁O,

X is Eℓℓp(O) = {EA : y2 = x3 + Ax2 + x | A ∈ Fp and EA is supersingular},
⋆ is the CSIDH group action, and

x̃ is the supersingular curve E0 : y2 = x3 + x over Fp.

✎ Low Memory Attacks on Small Key CSIDH 7



1 REGA overview

2 REGA-based Diffie-Hellman protocol

3 Adapting Techniques to the REGA-DLOGm Setting

4 Potential Impact on Bit Security Level

✎ Low Memory Attacks on Small Key CSIDH 8



Adapting Techniques to the REGA-DLOGm Setting

Given x, y ∈ X , we want to find v ∈ SK1 with y = v ⋆ x. Let us focus on the case m = 1 for simplicity. Let
N = #H, Nm = 3n ≪ N, and W = 3ωn for some ω ∈ J0,0.5K.
Let

SK1 = {−1,0, 1}n, SK2 = {0, 1, 2}n, and SK3 = {−2,0, 2}n.

• Pollard-style random walks based on [5, 4]. Time complexity: O(
√
N);

• Meet-in-the-Middle (MitM). Memory and Time complexities: O(30.5n).

• Parallel Collision Search (PCS): Memory complexity Õ (W), and Time complexity Õ
(
3(0.75−0.5ω)n

)
.

• Representation-based Approach (This work): α = 1/3 implies Memory complexity Õ (W), and Time
complexity Õ

(
3(0.675−0.5ω)n

)
when ω ≤ 0.22.

• Partial Representation (This work):

✎ Low Memory Attacks on Small Key CSIDH 9



Adapting Techniques to the REGA-DLOGm Setting

Given x, y ∈ X , we want to find v ∈ SK1 with y = v ⋆ x. Let us focus on the case m = 1 for simplicity. Let
N = #H, Nm = 3n ≪ N, and W = 3ωn for some ω ∈ J0,0.5K.
Let

SK1 = {−1,0, 1}n, SK2 = {0, 1, 2}n, and SK3 = {−2,0, 2}n.

• Pollard-style random walks based on [5, 4]. Time complexity: O(
√
N);

• Meet-in-the-Middle (MitM). Memory and Time complexities: O(30.5n).

• Parallel Collision Search (PCS): Memory complexity Õ (W), and Time complexity Õ
(
3(0.75−0.5ω)n

)
.

• Representation-based Approach (This work): α = 1/3 implies Memory complexity Õ (W), and Time
complexity Õ

(
3(0.675−0.5ω)n

)
when ω ≤ 0.22.

• Partial Representation (This work):

✎ Low Memory Attacks on Small Key CSIDH 9



Adapting Techniques to the REGA-DLOGm Setting

Given x, y ∈ X , we want to find v ∈ SK1 with y = v ⋆ x. Let us focus on the case m = 1 for simplicity. Let
N = #H, Nm = 3n ≪ N, and W = 3ωn for some ω ∈ J0,0.5K.
Let

Sm,0 := {−1,0, 1}
n
2 × {0}

n
2 , and Sm,1 := {0}

n
2 × {1,0, 1}

n
2 .

• Pollard-style random walks based on [5, 4]. Time complexity: O(
√
N);

• Meet-in-the-Middle (MitM). Memory and Time complexities: O(30.5n). It reduces to finding two
vectors v0 ∈ Sm,0 and v1 ∈ Sm,1 with v0 ⋆ x = (−v1) ⋆ y. The solution is v = v0 + v1.

• Parallel Collision Search (PCS): Memory complexity Õ (W), and Time complexity Õ
(
3(0.75−0.5ω)n

)
.

• Representation-based Approach (This work): α = 1/3 implies Memory complexity Õ (W), and Time
complexity Õ

(
3(0.675−0.5ω)n

)
when ω ≤ 0.22.

• Partial Representation (This work):

✎ Low Memory Attacks on Small Key CSIDH 9



Adapting Techniques to the REGA-DLOGm Setting

Given x, y ∈ X , we want to find v ∈ SK1 with y = v ⋆ x. Let us focus on the case m = 1 for simplicity. Let
N = #H, Nm = 3n ≪ N, and W = 3ωn for some ω ∈ J0,0.5K.
Let

Sn/2
m := {−m, . . . ,m}

n
2 , H : {0, 1}∗ → Sn/2

m , f0 : v 7→ H(v ⋆ x), and f1 : v 7→ H
(
(−v) ⋆ y

)

• Pollard-style random walks based on [5, 4]. Time complexity: O(
√
N);

• Meet-in-the-Middle (MitM). Memory and Time complexities: O(30.5n).

• Parallel Collision Search (PCS): Memory complexity Õ (W), and Time complexity Õ
(
3(0.75−0.5ω)n

)
.

It reduces to finding the golden collision f0(v0) = f1(v1) that leads to v = (v0,0) + (0, v1).

• Representation-based Approach (This work): α = 1/3 implies Memory complexity Õ (W), and Time
complexity Õ

(
3(0.675−0.5ω)n

)
when ω ≤ 0.22.

• Partial Representation (This work):

✎ Low Memory Attacks on Small Key CSIDH 9



Adapting Techniques to the REGA-DLOGm Setting

Given x, y ∈ X , we want to find v ∈ SK1 with y = v ⋆ x. Let us focus on the case m = 1 for simplicity. Let
N = #H, Nm = 3n ≪ N, and W = 3ωn for some ω ∈ J0,0.5K.
Let α ∈ J0, 1K, f0 : v 7→ H(v ⋆ x), f1 : v 7→ H

(
(−v) ⋆ y

)
,

T n(α) := {x ∈ {−1,0, 1}n | x contains exactly αn (+1) and αn (−1) entries}, and H : {0, 1}∗ → T n(α).

• Pollard-style random walks based on [5, 4]. Time complexity: O(
√
N);

• Meet-in-the-Middle (MitM). Memory and Time complexities: O(30.5n).

• Parallel Collision Search (PCS): Memory complexity Õ (W), and Time complexity Õ
(
3(0.75−0.5ω)n

)
.

• Representation-based Approach (This work): α = 1/3 implies Memory complexity Õ (W), and Time
complexity Õ

(
3(0.675−0.5ω)n

)
when ω ≤ 0.22. The solution is v = v0 + v1.

• Partial Representation (This work):

✎ Low Memory Attacks on Small Key CSIDH 9



Adapting Techniques to the REGA-DLOGm Setting

Given x, y ∈ X , we want to find v ∈ SK1 with y = v ⋆ x. Let us focus on the case m = 1 for simplicity. Let
N = #H, Nm = 3n ≪ N, and W = 3ωn for some ω ∈ J0,0.5K.
Let α ∈ J0, 1K, f0 : v 7→ H(v ⋆ x), f1 : v 7→ H

(
(−v) ⋆ y

)
,

T n(α) := {x ∈ {−1,0, 1}n | x contains exactly αn (+1) and αn (−1) entries}, and H : {0, 1}∗ → T n(α).

• Pollard-style random walks based on [5, 4]. Time complexity: O(
√
N);

• Meet-in-the-Middle (MitM). Memory and Time complexities: O(30.5n).

• Parallel Collision Search (PCS): Memory complexity Õ (W), and Time complexity Õ
(
3(0.75−0.5ω)n

)
.

• Representation-based Approach (This work): α = 1/3 implies Memory complexity Õ (W), and Time
complexity Õ

(
3(0.675−0.5ω)n

)
when ω ≤ 0.22.

• Partial Representation (This work): This time fi : Di → D where D := T
(1−δ)n

2 (1/3)× T δn(α),

D0 := T
(1−δ)n

2 (1/3)× {0}
(1−δ)n

2 × T δn(α) and

D1 := {0}
(1−δ)n

2 × T
(1−δ)n

2 (1/3)× T δn(α),
(1)

The solution is v = v0 + v1.

✎ Low Memory Attacks on Small Key CSIDH 9



Adapting Techniques to the REGA-DLOGm Setting

0 0.1 0.2 0.3 0.4 0.5

0.5

0.75

1

log3 M
n

lo
g
3
T

n

MitM
PCS
Rep.

(a) Complexity of PCS, MitM and the representation-based
trade-off

0 0.1 0.2 0.3 0.4 0.5

0.5

0.55

0.6

0.65

log3 M
n

lo
g
3
T

n

PCS
Rep.
Partial Rep.

(b) Complexity of PCS, the representation trade-off, and
partial representations.

✎ Low Memory Attacks on Small Key CSIDH 10



Adapting Techniques to the REGA-DLOGm Setting

0 0.1 0.2 0.3 0.4 0.5

0.5

0.55

0.6

0.65

0.7

0.75

log3 M
n

lo
g
3
T

n
PCS
Partial Rep.
Increased Rep.

(a) Complexity of different approaches.

0 0.1 0.2 0.3 0.4 0.5

0.5

0.55

0.6

0.65

0.7

0.75

log2m+1 M
n

lo
g
2m

+
1
T

n

PCS
m = 1 (increased rep.)
m = 2
m = 2 (increased rep.)
m = 3

(b) Complexity for different choices of m.

Figure: On the left: Comparison of different representation based methods.
On the right: Comparison of representation based methods for different m.

✎ Low Memory Attacks on Small Key CSIDH 10



1 REGA overview

2 REGA-based Diffie-Hellman protocol

3 Adapting Techniques to the REGA-DLOGm Setting

4 Potential Impact on Bit Security Level

✎ Low Memory Attacks on Small Key CSIDH 11



Potential Impact on Bit Security Level: CSIDH scenario

In the SQALEd-CSIDH [3], three concrete parameter instantiations for ternary-key are given, respectively,
aiming at satisfying NIST security level L1, L2 and L3. To match the security definition of category Li the
authors impose restrictions on the memory and time complexity of Mi = 2wi and Ti = 2ti with

(w1,w2,w3) = (80, 100, 119) and (t1, t2, t3) = (128, 128, 192).

Additionally,

• The number of generators ni are equal to n1 = 139 for L1, n2 = 148 for L2 and n3 = 210 for L3.
• The security of those parameter sets is determined via the PCS time-memory trade-off.
• In the memory restrictions, the authors of [3] conservatively ignore polynomial factors.

Consequently, it holds Mi = 3cini = 2wi , which allows to determine the asymptotic memory exponent as
ci =

wi
ni·log2 3 . Then, we obtain

1. c1 ≈ 0.3631 and running time TPCS = 30.5685n.

This work: TRep = 30.5316n (gain of 8.13 bits).

2. c2 ≈ 0.4263 and running time TPCS = 30.5369n.

This work: TRep = 30.5174n (gain of 4.57 bits).

3. c3 ≈ 0.3575 and running time TPCS = 30.5713n.

This work: TRep = 30.5330n (gain of 12.75 bits).

✎ Low Memory Attacks on Small Key CSIDH 12



Potential Impact on Bit Security Level: CSIDH scenario

In the SQALEd-CSIDH [3], three concrete parameter instantiations for ternary-key are given, respectively,
aiming at satisfying NIST security level L1, L2 and L3. To match the security definition of category Li the
authors impose restrictions on the memory and time complexity of Mi = 2wi and Ti = 2ti with

(w1,w2,w3) = (80, 100, 119) and (t1, t2, t3) = (128, 128, 192).

Additionally,

• The number of generators ni are equal to n1 = 139 for L1, n2 = 148 for L2 and n3 = 210 for L3.
• The security of those parameter sets is determined via the PCS time-memory trade-off.
• In the memory restrictions, the authors of [3] conservatively ignore polynomial factors.

Consequently, it holds Mi = 3cini = 2wi , which allows to determine the asymptotic memory exponent as
ci =

wi
ni·log2 3 . Then, we obtain

1. c1 ≈ 0.3631 and running time TPCS = 30.5685n.

This work: TRep = 30.5316n (gain of 8.13 bits).

2. c2 ≈ 0.4263 and running time TPCS = 30.5369n.

This work: TRep = 30.5174n (gain of 4.57 bits).

3. c3 ≈ 0.3575 and running time TPCS = 30.5713n.

This work: TRep = 30.5330n (gain of 12.75 bits).

✎ Low Memory Attacks on Small Key CSIDH 12



Potential Impact on Bit Security Level: CSIDH scenario

In the SQALEd-CSIDH [3], three concrete parameter instantiations for ternary-key are given, respectively,
aiming at satisfying NIST security level L1, L2 and L3. To match the security definition of category Li the
authors impose restrictions on the memory and time complexity of Mi = 2wi and Ti = 2ti with

(w1,w2,w3) = (80, 100, 119) and (t1, t2, t3) = (128, 128, 192).

Additionally,

• The number of generators ni are equal to n1 = 139 for L1, n2 = 148 for L2 and n3 = 210 for L3.
• The security of those parameter sets is determined via the PCS time-memory trade-off.
• In the memory restrictions, the authors of [3] conservatively ignore polynomial factors.

Consequently, it holds Mi = 3cini = 2wi , which allows to determine the asymptotic memory exponent as
ci =

wi
ni·log2 3 . Then, we obtain

1. c1 ≈ 0.3631 and running time TPCS = 30.5685n. This work: TRep = 30.5316n (gain of 8.13 bits).
2. c2 ≈ 0.4263 and running time TPCS = 30.5369n. This work: TRep = 30.5174n (gain of 4.57 bits).
3. c3 ≈ 0.3575 and running time TPCS = 30.5713n. This work: TRep = 30.5330n (gain of 12.75 bits).

✎ Low Memory Attacks on Small Key CSIDH 12



Questions?

Thanks for attending!

✎ Low Memory Attacks on Small Key CSIDH 13



References I

[1] Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis.
Cryptographic group actions and applications.
In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part II, volume 12492 of LNCS, pages 411–439.
Springer, Heidelberg, December 2020.

[2] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
CSIDH: an efficient post-quantum commutative group action.
In Thomas Peyrin and Steven D. Galbraith, editors, Advances in Cryptology - ASIACRYPT 2018 - 24th International
Conference on the Theory and Application of Cryptology and Information Security, Brisbane, QLD, Australia,
December 2-6, 2018, Proceedings, Part III, volume 11274 of Lecture Notes in Computer Science, pages 395–427.
Springer, 2018.

[3] Jorge Chávez-Saab, Jesús-Javier Chi-Domínguez, Samuel Jaques, and Francisco
Rodríguez-Henríquez.
The SQALE of CSIDH: sublinear vélu quantum-resistant isogeny action with low exponents.
J. Cryptogr. Eng., 12(3):349–368, 2022.

[4] Steven Galbraith and Anton Stolbunov.
Improved algorithm for the isogeny problem for ordinary elliptic curves.
Applicable Algebra in Engineering, Communication and Computing, 24(2):107–131, 2013.

✎ Low Memory Attacks on Small Key CSIDH 14



References II

[5] Steven D. Galbraith, Florian Hess, and Nigel P. Smart.
Extending the GHS Weil descent attack.
In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 29–44. Springer, Heidelberg,
April / May 2002.

✎ Low Memory Attacks on Small Key CSIDH 15


	REGA overview
	REGA-based Diffie-Hellman protocol
	Adapting Techniques to the REGA-DLOGm Setting
	Potential Impact on Bit Security Level

